基于DDVC的超深钻井绞车型升沉补偿系统的建模和控制
[Abstract]:For the detection and development of deep-sea resources, it is necessary to adopt ultra-deep water ultra-deep well floating drilling. Heave compensation system is one of the necessary equipment for floating drilling. The heave compensation system of winch is based on direct drive volume control (DDVC) and hydraulic transformer energy recovery technology. The lifting displacement of drill string is compensated by controlling the movement of winch. The direct drive volume control part of the system has the advantages of energy saving and high efficiency, wide range of speed regulation, flexible control and so on. However, the DDVC system belongs to volume control, the response speed of the system is slow, and the control characteristic is poor. Therefore, the improvement of dynamic characteristics of DDVC hydraulic system is one of the key points of this paper. In the heave compensation system of winch type, the heave motion of the platform is an interference, the purpose of compensation is to ensure the constant drilling pressure, the conventional feedback control belongs to the method of control after the error appears, the precision is not high, and the response speed is slow. The compensation operation of the control mechanism can not be synchronized with the lift motion of the floating operation platform, and the synchronization elimination of disturbance, namely synchronous lift compensation, can not be realized. The compensation precision is not high. Therefore, the problem of eliminating disturbance synchronously and improving the compensation accuracy of large inertia system is another key problem in this paper. The main research work of this paper is as follows: 1. The mathematical model of the direct drive volume control hydraulic motor system in the heave compensation system of the winch model is established, and the simulation model of the direct drive pump control motor system is established in AMESim. The mathematical model of the system is simulated and analyzed, and the AMESim model of the system is simulated and verified, and the speed response characteristics of the direct drive pump control motor are explored. 2, in order to improve the dynamic characteristics of the heave compensation system of the winch type, The scheme of variable speed-variable displacement pump-controlled motor system and the scheme of direct-drive pump-controlled motor system controlled by multiple groups of different power motors driving different displacement pumps are presented. The simulation analysis and verification are carried out in MATLAB/Simulink and AMESim. The correctness of the proposed scheme is verified. 3, the overall control scheme of the heave compensation system of winch type is improved, and a nonlinear disturbance compensation controller based on platform velocity prediction is proposed to compensate the displacement of the hook. The disturbance synchronous elimination of the large inertia system is basically realized, and the compensation accuracy of the system is improved. 4. The experimental platform of the heave compensation system of the straight drive twist model is designed, and the structure design and AMESim modeling and simulation of the experimental platform are carried out. The compensation characteristics and response characteristics of the experimental platform are analyzed. The speed response experiment of servo motor is carried out to verify that the model of servo motor is correct. Combined with the ocean heave motion simulation platform, the experimental analysis of the predictive compensation controller is carried out to verify that the proposed prediction scheme is reasonable.
【学位授予单位】:广东工业大学
【学位级别】:硕士
【学位授予年份】:2016
【分类号】:P715.1
【相似文献】
相关期刊论文 前7条
1 吴百海,肖体兵,龙建军,毛宁;深海采矿装置的自动升沉补偿系统的模拟研究[J];机械工程学报;2003年07期
2 王海波;王庆丰;;水下拖曳升沉补偿系统水动力数学模型研究[J];海洋工程;2008年04期
3 肖体兵,吴百海,罗忠辉;重型扬矿管主动升沉补偿系统的设计与仿真研究[J];机床与液压;2002年06期
4 吕东,何将三,刘少军;深海采矿被动式升沉补偿系统设计及仿真分析[J];矿山机械;2003年11期
5 曾宪来;李仲兰;刘文刚;户亚东;邢振振;杨松山;;海洋石油钻井自动升沉补偿模拟装置设计及实验研究[J];黑龙江科技信息;2014年09期
6 吴百海,邹大鹏,冶占武,陈飞燕,肖奇军;深海采矿长行程升沉补偿油缸的同步检测与控制[J];机床与液压;2004年10期
7 ;[J];;年期
相关会议论文 前5条
1 肖体兵;吴百海;;轻载主动型升沉补偿模拟试验系统的仿真和实验研究[A];中国海洋学会2005年学术年会论文汇编[C];2005年
2 任克忍;沈大春;王定亚;肖锐;李鹏;南树歧;;海洋钻井升沉补偿系统技术分析[A];2009年石油装备学术研讨会论文专辑[C];2009年
3 姜浩;刘衍聪;张彦廷;刘振东;;钻柱升沉补偿试验台控制系统设计[A];2011年石油装备学术研讨会论文专辑[C];2011年
4 肖体兵;;深海采矿扬矿管重载半主动型升沉补偿系统控制器的研究[A];第二十七届中国控制会议论文集[C];2008年
5 吴百海;邹大鹏;冶占武;陈飞燕;肖奇军;;深海采矿长行程升沉补偿油缸的同步检测与控制[A];机床与液压学术研讨会论文集[C];2004年
相关重要报纸文章 前1条
1 澳思;OSBV公司将为Edda住宿船建过道[N];中国船舶报;2010年
相关博士学位论文 前5条
1 肖体兵;深海采矿装置智能升沉补偿系统的研究[D];广东工业大学;2004年
2 曾智刚;波浪运动升沉补偿液压平台关键问题试验研究[D];华南理工大学;2010年
3 王海波;水下拖曳升沉补偿液压系统及其控制研究[D];浙江大学;2009年
4 姜浩;海洋浮式钻井平台钻柱升沉补偿系统研究[D];中国石油大学(华东);2013年
5 李流军;动力吸振式深海采矿主动升沉补偿系统设计及控制研究[D];中南大学;2012年
相关硕士学位论文 前10条
1 陈武雄;复合缸游车大钩升沉补偿试验台电控系统的设计及实验研究[D];中国石油大学(华东);2014年
2 王龙;基于恒张力原理的绞车升沉补偿系统研究[D];中国地质大学;2015年
3 李俊;半潜式平台天车主动升沉补偿系统研究[D];中国石油大学(华东);2014年
4 马希榕;二次调节海浪升沉补偿控制技术研究[D];北京理工大学;2016年
5 洪永;基于DDVC的超深钻井绞车型升沉补偿系统的建模和控制[D];广东工业大学;2016年
6 白鹿;钻柱液压升沉补偿系统设计研究[D];中国石油大学;2009年
7 武光斌;复合缸式钻井升沉补偿系统的设计研究[D];中国石油大学;2010年
8 刘彦武;钻柱升沉补偿系统设计与动力响应分析[D];中国石油大学;2010年
9 胡小东;浮式海洋钻井钻柱升沉补偿系统的设计[D];中国地质大学;2013年
10 贺子奇;海上作业绞车式主动升沉补偿系统设计与仿真[D];大连理工大学;2015年
,本文编号:2473564
本文链接:https://www.wllwen.com/kejilunwen/haiyang/2473564.html