船载高频地波雷达海洋表面流遥感方法研究
[Abstract]:High Frequency Surface Wave Radar (HFSWR) makes use of the vertical polarized high-frequency electromagnetic wave (3-30 MHz) to realize the over-the-horizon detection of targets such as marine vessels and low-altitude aircraft, as well as the large range of information on the surface state of the ocean (such as current, wind field and wave, etc.). All-weather sea-state remote sensing. The ship-borne HFSWR is an in-depth and development of the shore-based HFSWR technology. In addition to the advantages of the land-based radar, the ship-borne HFSWR is characterized by the flexible mobility of the ship-borne platform. With this feature, the shipboard HFSWR can quickly go to the area of interest to carry out the target detection or the sea-state remote sensing operation. Therefore, the shipboard HFSWR has a wide development prospect and application value in the military and civil fields. At present, the sea-state remote sensing theory and application technology based on the shore-based HFSWR are relatively mature, and a variety of shore-based HFSWR systems have been successfully developed at home and abroad. But the research of the sea-state remote sensing theory and the application technology based on the shipborne HFSWR is basically a blank. In this paper, the ship-borne HFSWR is used as the research platform, and the sea surface flow is used as the research object to carry out the research of the ship-borne HFSWR ocean surface flow remote sensing method. The research results of this paper will provide a new theoretical basis and method for carrying out the shipborne HFSWR sea-state remote sensing research, which is of great significance to the deep research and development of radio oceanography. The main contents of this paper are as follows:1. The basic principle of the sea surface flow remote sensing of the shore-based HFSWR is briefly introduced, and on the basis of this, the mechanism of the Doppler spectrum broadening of the shipborne HFSWR wave echo signal and the main problems for the application of the ship-borne HFSWR to the remote sensing of the marine surface flow are analyzed, that is, the direction of arrival of the radial flow of the ocean surface (Direction-of-Arrival, DOA estimation, space-time coupling of sea wave echo signals, and estimation of vector flow for single-station ocean surface. Aiming at the problem that the number of the array elements is small in the radial flow direction estimation of the ship-borne HFSWR ocean surface, the problem that the target signal is easy to appear in the Doppler spectrum of the spread sea wave echo and the problem that the reconstruction precision is low and the calculation amount is large are common in the extended sea wave echo Doppler spectrum, Firstly, the sparsity of the ship-borne HFSWR wave echo signal in a single distance and a Doppler-resolving unit is analyzed, and two DOA estimation methods based on the sparse representation of the real-value array signal and the real-value array signal covariance matrix are then studied. And finally, the validity of the two real-value sparse representation methods is verified by the computer simulation result and the measured ship-borne HFSWR data processing result. Aiming at the problem of space-time coupling of the shipborne HFSWR wave echo signal, the characteristic spectrum and the distribution characteristic of the shipborne HFSWR wave echo signal are firstly analyzed, A method for estimating the rank of a ship-borne HFSWR wave echo signal covariance matrix (that is, the number of large characteristic values in the wave echo signal characteristic spectrum) is studied, and then the sparsity of the ship-borne HFSWR wave echo signal in the whole space-time two-dimensional joint domain is analyzed by using the method, In this paper, a space-time two-dimensional multi-signal classification (MUSIC) method based on sparse representation of real-value is studied, and it is applied to the space-time two-dimensional spectral estimation of ship-borne HFSWR wave echo signals. Finally, a computer simulation analysis is used to verify the validity of the ship-borne HFSWR wave echo signal covariance matrix rank estimation method and the space-time two-dimensional MUSIC method based on the real-value sparse representation. aiming at the problem that the single-station HFSWR is difficult to directly acquire the ocean surface vector flow, the distribution characteristics of the marine surface vector flow field and the distribution characteristics of the ship-borne HFSWR ocean surface radial flow measurement error are analyzed theoretically, a single-station shipborne HFSWR ocean surface vector flow estimation method based on the first-order flow function is researched, And the effectiveness of the method under the conditions of uniform flow field and non-uniform flow field is verified by computer simulation analysis.
【学位授予单位】:哈尔滨工业大学
【学位级别】:博士
【学位授予年份】:2015
【分类号】:P715.7;TN959
【相似文献】
相关期刊论文 前10条
1 高志荣;熊承义;笪邦友;;改进的基于残差加权的稀疏表示人脸识别[J];中南民族大学学报(自然科学版);2012年03期
2 陈才扣;喻以明;史俊;;一种快速的基于稀疏表示分类器[J];南京大学学报(自然科学版);2012年01期
3 耿耀君;张军英;;一种基于投影稀疏表示的基因选择方法[J];哈尔滨工程大学学报;2011年08期
4 熊承义;汪淑贤;高志荣;;基于字典优化的稀疏表示人脸识别[J];中南民族大学学报(自然科学版);2014年02期
5 戴平阳;洪景新;李翠华;詹小静;;一种基于稀疏表示的判别式目标跟踪算法[J];厦门大学学报(自然科学版);2014年04期
6 赵佳佳;唐峥远;杨杰;刘尔琦;周越;;基于图像稀疏表示的红外小目标检测算法[J];红外与毫米波学报;2011年02期
7 柯激情;祝磊;厉力华;韩斌;郑智国;孟旭莉;;基于稀疏表示算法的蛋白质质谱数据特征选择[J];生物物理学报;2012年08期
8 王立国;刘丹凤;赵亮;;基于高光谱图像稀疏表示的彩色可视化模型(英文)[J];Applied Geophysics;2013年02期
9 宋琳;程咏梅;赵永强;;基于稀疏表示模型和自回归模型的高光谱分类[J];光学学报;2012年03期
10 罗燕龙;刘伟盛;戴平阳;李翠华;;基于局部稀疏表示模型的海上红外目标跟踪方法[J];厦门大学学报(自然科学版);2013年03期
相关会议论文 前3条
1 何爱香;刘玉春;魏广芬;;基于稀疏表示的煤矸界面识别研究[A];虚拟运营与云计算——第十八届全国青年通信学术年会论文集(上册)[C];2013年
2 樊亚翔;孙浩;周石琳;邹焕新;;基于元样本稀疏表示的多视角目标识别[A];2013年中国智能自动化学术会议论文集(第五分册)[C];2013年
3 葛凤翔;任岁玲;郭鑫;郭良浩;孙波;;微弱信号处理及其研究进展[A];中国声学学会水声学分会2013年全国水声学学术会议论文集[C];2013年
相关博士学位论文 前10条
1 李进明;基于稀疏表示的图像超分辨率重建方法研究[D];重庆大学;2015年
2 王亚宁;基于信号稀疏表示的电机故障诊断研究[D];河北工业大学;2014年
3 姚明海;视频异常事件检测与认证方法研究[D];东北师范大学;2015年
4 黄国华;蛋白质翻译后修饰位点与药物适应症预测方法研究[D];上海大学;2015年
5 王瑾;基于稀疏表示的数据收集、复原与压缩研究[D];北京工业大学;2015年
6 王文卿;基于融合框架与稀疏表示的遥感影像锐化[D];西安电子科技大学;2015年
7 解虎;高维小样本阵列自适应信号处理方法研究[D];西安电子科技大学;2015年
8 秦振涛;基于稀疏表示及字典学习遥感图像处理关键技术研究[D];成都理工大学;2015年
9 薛明;基于稀疏表示的在线目标跟踪研究[D];上海交通大学;2014年
10 孙乐;空谱联合先验的高光谱图像解混与分类方法[D];南京理工大学;2014年
相关硕士学位论文 前10条
1 吴丽璇;基于稀疏表示的微聚焦X射线图像去噪方法[D];华南理工大学;2015年
2 赵孝磊;基于图像分块稀疏表示的人脸识别算法研究[D];南京信息工程大学;2015年
3 黄志明;基于辨别式稀疏字典学习的视觉追踪算法研究[D];华南理工大学;2015年
4 张铃华;非约束环境下的稀疏表示人脸识别算法研究[D];南京信息工程大学;2015年
5 贺妍斐;基于稀疏表示与自适应倒易晶胞的遥感图像复原方法研究[D];南京信息工程大学;2015年
6 杨烁;电能质量扰动信号的稀疏表示/压缩采样研究[D];西南交通大学;2015年
7 应艳丽;基于低秩稀疏表示的目标跟踪算法研究[D];西南交通大学;2015年
8 梁晓捷;基于网络摄像头与稀疏表示分类法的实时人脸识别系统应用研究[D];五邑大学;2015年
9 张宏乐;语音信号稀疏表示方法研究[D];太原理工大学;2016年
10 郭欣;基于K-SVD稀疏表示的语音增强算法研究[D];太原理工大学;2016年
,本文编号:2490855
本文链接:https://www.wllwen.com/kejilunwen/haiyang/2490855.html