基于化学链燃烧热耦合蒸汽强化重整氢电联产系统研究
发布时间:2018-03-25 07:47
本文选题:甲烷重整 切入点:强化重整 出处:《西南石油大学》2015年硕士论文
【摘要】:探索新型的能源转化利用以及低能耗控制CO2气体是21世纪上半叶能源科学领域研究的重要课题之一。本论文针对常规甲烷重整制氢过程所存在的能源利用不合理及CO2分离功耗过大等弊端在化学工程、环境工程及工程热力学等学科的层面上进行探讨,提出了基于化学链燃烧热耦合蒸汽强化重整氢电联产系统并对其进行研究。 基于总能系统物理能与化学能综合梯级利用基本原理,分析了燃料直接燃烧过程炯损失较大的主要原因,即燃烧反应的能量品位不匹配、不合理利用反应特性、反应中化学能损失的增大。依据燃料炯、化学反应Gibbs自由能变化及热量炯之间的相互关系,研究了燃料直接燃烧过程和化学链燃烧过程炯利用特性,从理论上分析了化学链燃烧系统燃料炯利用率提升机理。为证明化学链燃烧系统可增加系统有效输出功,分析燃烧前分离、燃烧后分离、纯氧燃烧及化学链燃烧等四种能源动力系统。结果表明化学链燃烧中间换热系统具有最高的炯效率(50.09%),较燃烧前分离(40.88%),燃烧后分离(44.59%)及纯氧燃烧(42.51%)分别高出9.21、5.5、7.58个百分点。化学链燃烧中间换热系统燃料煳损仅为447.74MW。针对传统制氢过程能耗较大的问题,根据“降低CO2分离能耗、提高重整气中H2纯度”的系统集成原则,提出了基于化学链燃烧热耦合蒸汽强化重整氢电联产系统。通过与传统蒸汽重整制氢系统比较,并且采用热力学第二定律分析方法,探讨联产系统内部能量转化利用规律和制氢过程能耗降低的机理。结果表明新型联产系统的最大炯效率为83.1%。联产系统相对于常规甲烷蒸汽重整制氢系统节能14.4%。
[Abstract]:Exploring new energy conversion and controlling CO2 gas with low energy consumption is one of the most important topics in the field of energy science in the first half of the 21st century. And the disadvantages of CO2 separation such as excessive power consumption in chemical engineering, Based on the discussion of environmental engineering and engineering thermodynamics, the hydrogen electricity cogeneration system based on chemical chain combustion heat coupled steam enhanced reforming is proposed and studied. Based on the basic principle of comprehensive cascade utilization of physical and chemical energy of total energy system, the main reasons for the loss of fuel in direct combustion process are analyzed, that is, the energy grade of combustion reaction does not match and the characteristics of reaction are used unreasonably. According to the change of Gibbs free energy and the relationship between heat and energy, the characteristics of direct combustion of fuel and chemical chain combustion are studied. In order to prove that the chemical chain combustion system can increase the effective output work of the system, the separation before and after combustion is analyzed. Pure oxygen combustion and chemical chain combustion are four kinds of energy power systems. The results show that the chemical chain combustion intermediate heat transfer system has the highest efficiency of 50.09, which is higher than that of 40.88g before combustion and 44.59m after combustion) and 42.51% of pure oxygen combustion. The fuel loss of the chemical chain combustion intermediate heat transfer system is only 447.74 MW. In view of the problem of high energy consumption in the traditional hydrogen production process, According to the system integration principle of "reducing the energy consumption of CO2 separation and improving the purity of H _ 2 in reforming gas", a hydrogen-electricity cogeneration system based on chemical chain combustion heat coupled steam enhanced reforming is proposed. The system is compared with the traditional steam reforming system. And using the second law of thermodynamics analysis, The law of energy conversion and the mechanism of energy consumption reduction during hydrogen production in the cogeneration system are discussed. The results show that the maximum efficiency of the new system is 83.1 and the energy saving of the co-generation system is 14.4in comparison with the conventional methane steam reforming hydrogen production system.
【学位授予单位】:西南石油大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:TQ116.2
【参考文献】
相关期刊论文 前2条
1 王明星,张仁健,郑循华;温室气体的源与汇[J];气候与环境研究;2000年01期
2 钱伯章;朱建芳;;氢气生产的技术进展[J];天然气与石油;2009年01期
,本文编号:1662185
本文链接:https://www.wllwen.com/kejilunwen/huagong/1662185.html