基于FDFD方法的含石墨烯典型结构光电特性研究
发布时间:2018-03-26 18:33
本文选题:石墨烯 切入点:化学势 出处:《安徽大学》2015年硕士论文
【摘要】:自石墨烯(Graphene)问世至今,其物理特性和光电特性备受各界学者的广泛关注。石墨烯被认为是现如今世界上最硬的材料,且其理论比表面积可达2630m2/g。作为石墨烯应用最广泛的特性之一,其光电特性可以通过调节温度、频率、电磁场等因素来改变。总之,作为一种新型的二维材料,石墨烯在储能材料、半导体光电器件以及复合材料等领域有着很好的应用前景。在大多数研究结构中,吸收效率的提升和吸收谐振峰位置的可调谐已然成为研究学者们的关注要点。本文利用石墨烯的光电特性,即石墨烯的电导率和介电常数可以通过改变化学势的大小进行调节,并借助频域有限差分(the Finite Difference Frequency Domain,简称FDFD)方法的算法模拟,理论上实现了对非晶硅(the Amorphous Silicon,简称A-Si)太阳能电池和严格耦合谐振器的吸收峰位置的可调谐以及吸收效率的提高。在此理论基础上,研究分析了非晶硅太阳能电池和严格耦合谐振器的反射、传输和吸收特性。本文的主要研究工作如下:1.简要阐述石墨烯薄膜材料的基本理论,包括其发现历程、结构组成、物理以及光学特性等。在石墨烯的理论基础上,利用KuBo方程研究计算得石墨烯在不同环境条件下的电导率和介电常数公式,并探讨了在可见光波段和红外波段处的石墨烯电参数模型。2.简要讨论了FDFD方法的发展历史和基本原理,并对比阐述了FDFD方法在处理散射问题、斜入射问题和周期结构等方面要优于时域有限差分(theFinite-Difference Time-Domain,简称FDTD)方法。简要推导得出FDFD方法的理论公式,并推导得出在二维周期结构中的FDFD算法构造。3.在室温条件下,调节石墨烯的化学势大小,并结合FDFD方法,阐述了非晶硅太阳能电池和严格耦合谐振器分别在可见光和红外波段领域的吸收增强和谐振峰可调。然后,通过后处理技术分析这两种结构的反射、传输和吸收特性,以及总场分布。
[Abstract]:Since graphene (Graphene) so far, the physical properties and optical properties has attracted wide attention from scholars. Graphene is believed to be now the world's most hard materials, and the theory of surface area up to 2630m2/g. as one of the most widely used characteristics of graphene, its optical and electrical properties can be adjusted by temperature, frequency the electromagnetic field, and other factors to change. In a word, as a novel two-dimensional material, graphene in the energy storage material, the field of semiconductor optoelectronic devices and composite materials have a good application prospect. In most studies the structure, absorption efficiency and absorption resonance wavelength tunable has become a key focus of research the scholars. This paper uses the photoelectric properties of graphene, graphene is the electrical conductivity and dielectric constant can be adjusted by changing the size of the chemical potential, and using the finite-difference frequency-domain (the Finite D Ifference Frequency Domain, referred to as FDFD) simulation algorithm, realized the theory of amorphous silicon (the Amorphous Silicon, referred to as A-Si) absorption peak position of solar cell and strictly coupled resonator tunable and improve the absorption efficiency. On the basis of the theory, research and analysis of the reflection of amorphous silicon solar cell and strict coupling resonator, transmission and absorption properties. The main research work is as follows: 1. briefly describes the basic theory of graphene films, including the history of the discovery, structure, physical and optical properties. Based on the theory of graphene, graphene was calculated under different conditions of permittivity and conductivity formula based on KuBo equation, and discusses in the visible band and infrared band of the graphene electrical parameter model.2. FDFD method is briefly discussed the development history and basic principles Daniel, and illustrated the FDFD method in dealing with scattering problems on the oblique incidence and periodic structure is better than the finite difference time domain (theFinite-Difference Time-Domain, referred to as FDTD) method. The theoretical formula are derived FDFD method, and deduced in Er Weizhou period structure of the FDFD algorithm for.3. at room temperature, chemical the potential to adjust the size of graphene, and combined with the FDFD method, describes the amorphous silicon solar cell and the rigorous coupled resonator are absorption enhancement of resonant peaks can be adjusted in the visible and infrared field. Then, after the analysis of reflection processing technology of these two kinds of structure, transmission and absorption properties, and the field distribution.
【学位授予单位】:安徽大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:TQ127.11
【参考文献】
相关期刊论文 前3条
1 鲁思龙;吴先良;任信钢;梅诣Pr;沈晶;黄志祥;;色散周期结构的辅助场时域有限差分法分析[J];物理学报;2012年19期
2 李彪;徐大海;曾晖;;边缘重构对锯齿型石墨烯纳米带电子输运的影响[J];物理学报;2014年11期
3 王辉;黄志祥;吴先良;任信钢;;Perfect plane-wave source for a high-order symplectic finite-difference time-domain scheme[J];Chinese Physics B;2011年11期
,本文编号:1669078
本文链接:https://www.wllwen.com/kejilunwen/huagong/1669078.html