氧化亚铜光电极的制备、表面修饰和光电学性能研究
发布时间:2018-03-27 23:40
本文选题:光电化学 切入点:氧化亚铜纳米线 出处:《南昌大学》2015年硕士论文
【摘要】:确定并建立一个可持续的能源系统是当今社会必须解决的关键问题。而其中,寻找合适的新能源是当下所需要面对的问题。氢能由于具有丰富且廉价的原料,便于储存和运输,对环境无污染等特点而被普遍认为是最好的清洁能源。通过光电催化分解水的方法,利用免费且无限的太阳制氢被认为是最具发展潜力的制氢方法。氧化亚铜是重要的p-型半导体氧化物,具有合适的禁带宽度(2.0 eV)保证了有效的可见光吸收,以及-0.7eV的导带位置(相对标准氢电极)使其能够光解水制氢,并且铜作为氧化亚铜的来源,大量存在于地壳中,因此氧化亚铜被认为是最有潜力的光解水制氢的光电极材料之一。然而氧化亚铜在光电化学分解水的应用中有两个主要的缺陷:载流子扩散长度较短且容易发生光腐蚀。现有的研究中,通过改变氧化亚铜的纳米结构,在氧化亚铜表面修饰保护层以及助催化剂等方法很好的提高了氧化亚铜的光电化学活性和稳定性。本文的工作内容主要包括以下两个方面:1利用阳极氧化的方法,通过优化条件,在10 mA/cm2电流密度下,制备了氢氧化铜纳米线,再经过550℃氮气环境下高温煅烧得到氧化亚铜纳米线。为了提高氧化亚铜的稳定性与光电化学活性,在氧化亚铜表面分别利用葡萄糖和醋酸镍为前躯体,先后修饰了碳层(550℃,氮气环境下煅烧)和氧化镍层(200℃,空气环境下煅烧)。通过电化学测试考察其光电化学活性,分析对比了不同葡萄糖浓度和醋酸镍浓度对光电极的光电化学活性和稳定性的影响。结果表明,当葡萄糖浓度为3 mg/mL时,修饰的碳层显著提高了氧化亚铜光电极的光电化学活性和稳定性;当醋酸镍浓度为0.2mg/m L时,氧化镍层修饰的光电极的光电化学活性和稳定性进一步提高;碳层和氧化镍复合修饰时,比碳层或镍层单独修饰时产生了更大的光电流,即产生协同效应。2用电镀的方法,在有机溶剂N-甲基甲酰胺中,以金属镍盐为原料,将金属镍沉积在氧化亚铜光电极表面作为助催化剂。利用光电化学测试,探究了不同的沉积电流密度和沉积时间对光电极的光电性能的影响。发现,在10 mA/cm2的电流密度下沉积10s时,光电极的光电活性明显提高,但稳定性却没有提高。为此,对修饰了金属镍的光电极进行了氧化后处理,在160℃下氧化了30min,在表面生成了氧化铜保护层和镍/氧化镍的核壳结构,进一步提高了光电极的光电活性和稳定性。
[Abstract]:Identifying and building a sustainable energy system is a key issue that must be addressed in today's society. Among them, finding suitable new sources of energy is an immediate problem. Hydrogen energy is easy to store and transport because of its rich and inexpensive raw materials, It is generally considered as the best clean energy because of its non-pollution and other characteristics. The method of photocatalytic decomposition of water, Free and unlimited solar hydrogen production is considered to be the most promising method for hydrogen production. Cuprous oxide is an important p-type semiconductor oxide with a suitable bandgap of 2.0 EV) to ensure effective visible light absorption. And the conduction band position of -0.7eV (relative to the standard hydrogen electrode) enables it to photodissociate water for hydrogen production, and copper, as a source of cuprous oxide, is abundant in the earth's crust. Therefore, cuprous oxide is considered to be one of the most promising photoelectrode materials for photodissociation of hydrogen from water. However, copper oxide has two main defects in the application of photochemical decomposition of water: short carrier diffusion length and easy occurrence. Photocorrosion. Existing research, By changing the nanostructure of cuprous oxide, The photochemical activity and stability of cuprous oxide are improved by modifying the protective layer and cocatalyst on the surface of cuprous oxide. Copper hydroxide nanowires were prepared at 10 mA/cm2 current density and calcined at 550 鈩,
本文编号:1673810
本文链接:https://www.wllwen.com/kejilunwen/huagong/1673810.html