基于协同优化的石膏基胶凝材料改性研究
发布时间:2018-03-28 12:24
本文选题:脱硫石膏 切入点:WPM缓凝剂 出处:《河北科技大学》2017年硕士论文
【摘要】:石膏及其制品具有优良的隔音、隔热、可呼吸和防火性能,被公认为绿色建筑材料。但是,建筑石膏凝结时间短、耐水性差和抗裂性能不足,限制了其应用及推广。本文以电厂脱硫建筑石膏为原料,基于协同优化作用,利用不同固体废弃物对其进行化学改性,解决建筑石膏上述缺陷,进而研制出一种高强、耐水、抗开裂型脱硫石膏砌块,改善了产品性能,实现多种废弃物的协同利用。首先,采用微波与碱协同的方法对青霉素废菌丝体改性,提取蛋白类物质作为脱硫石膏缓凝剂(WPM缓凝剂)。并通过单因素实验,渐次优化确定了最佳工艺条件,即:微波反应时间10 min、温度80℃、pH值11;并与常用石膏缓凝剂(柠檬酸、柠檬酸钠、多聚磷酸钠)对比,结果表明,WPM缓凝剂不仅对脱硫石膏具有良好的缓凝效果,同时与其良好的协同效应,水化硬化体强度损失较小。其次,以脱硫建筑石膏为原材料,工业固体废弃物(钢渣、矿渣)作为矿物掺和料,在电石渣碱性激发及高温快速养护的协同作用下发生水化反应,加之材料之间及水化过程的协同作用,降低脱硫石膏的孔隙率,提高了其密实程度,脱硫建筑石膏的耐水性及力学强度均得到提高。当钢渣、矿渣(1:1)复合微粉掺量为25%,电石渣掺量为8%时,抗折强度由原来(未掺加改性材料试样)的4.6 MPa增大到7.4 MPa,抗压强度由18.4 MPa增加到26.6 MPa,抗压软化系数也由0.44增加到0.87。为改善石膏制品的抗裂性能,将废弃的玻璃钢经机械破碎后制成的废玻璃钢纤维(WGFP纤维)掺加到脱硫石膏基复合胶凝材料体系中,研究了不同长度及不同掺量WGFP纤维对基体力学强度及耐水性的影响。结果表明:当WGFP纤维长度为10~15mm,掺量为1.0%时,WGFP纤维在基体中分散效果较好,抗折强度增加17.3%,抗压强度下降0.83%左右,抗开裂性能增强;同时,抗折软化系数达到0.83,耐水性也有所提高。表明,废玻璃钢纤维和胶凝材料之间存在明显的协同组合效应。WGFP纤维表面经过热处理、氢氧化钠溶液及EDTA溶液处理后,纤维表面粗糙度提高,与基体的界面粘结强度增强。经EDTA溶液处理的WGFP纤维使得试块抗折强度提高7.3%,抗压强度提高10.5%,同时,基体的软化系数提高12.5%。以脱硫建筑石膏为原料,利用废菌渣、钢渣、电石渣和废玻璃钢多种固体废弃物进行改性,较好地解决了建筑石膏凝结时间短、耐水性能差和抗裂性能低的缺点,在提高脱硫建筑石膏性能的同时,解决了固体废弃物堆存占地、污染环境和资源浪费问题,实现了物尽其用,具有较高的经济效益与环境效益。
[Abstract]:Gypsum and its products have excellent sound insulation, heat insulation, breathability and fire resistance, and are recognized as green building materials. However, building gypsum has short setting time, poor water resistance and poor crack resistance. The application and popularization of gypsum are limited. Based on the synergistic optimization, the plaster is chemically modified by different solid wastes to solve the above defects, and a kind of high strength and water resistance is developed. Anti-cracking desulphurization gypsum block improves the product performance and realizes the synergistic utilization of many kinds of wastes. Firstly, the penicillin waste mycelium is modified by microwave and alkali synergism. The protein was extracted as the retarder for desulfurization gypsum and WPM retarder. The optimum conditions were determined by single factor experiment, namely microwave reaction time 10 min, temperature 80 鈩,
本文编号:1676311
本文链接:https://www.wllwen.com/kejilunwen/huagong/1676311.html