光亮纳米晶镍的制备及其耐蚀性研究
本文选题:电镀镍 + 复合添加剂 ; 参考:《电镀与涂饰》2017年03期
【摘要】:通过向瓦特镀镍液中添加自行研发的复合添加剂(由糖精钠、二乙基丙炔胺、丙烷磺酸吡啶摀盐、乙烯基磺酸钠和羧乙基异硫脲甜菜碱组成),借助直流电沉积法在紫铜表面制得具有不同晶粒尺寸的镍镀层。采用扫描电镜、能谱、X射线衍射、原子力显微镜以及电化学测量技术对镍镀层的表面形貌、元素组成、晶粒尺寸及耐蚀性进行了表征,探讨了晶粒尺寸与光泽度、耐蚀性参数(自腐蚀电流、电荷转移电阻)之间的关系。结果显示,镍镀层表面光亮、均匀、基本无其他杂质元素,晶粒尺寸在纳米级别,镀层光泽度随平均晶粒尺寸的减小而增大,当晶粒尺寸为8 nm时,镀层光泽度达到最大,晶体呈单一的面心立方结构。镀层的耐蚀性随镀层晶粒尺寸的减少而提高,且相比传统添加剂获得的镀层具有更高的耐蚀性。
[Abstract]:By adding self-developed compound additives (sodium saccharin, diethylpropargine, pyridine propane sulfonate) to the nickel bath of Watt, Nickel coatings with different grain sizes were prepared on the surface of copper by direct current electrodeposition with sodium vinyl sulfonate and carboxyethyl isothiourea betaine. The surface morphology, elemental composition, grain size and corrosion resistance of nickel coating were characterized by scanning electron microscope, energy dispersive X-ray diffraction, atomic force microscope and electrochemical measurement. Relationship between corrosion resistance parameters (self-etching current, charge transfer resistance). The results show that the surface of nickel coating is bright, uniform, almost no other impurity elements, the grain size is in the nanometer level, and the gloss of the coating increases with the decrease of average grain size. When the grain size is 8 nm, the gloss of the coating reaches the maximum. The crystal has a single face-centered cubic structure. The corrosion resistance of the coating increases with the decrease of the grain size of the coating, and the corrosion resistance of the coating is higher than that of the traditional additives.
【作者单位】: 中南大学化学化工学院;
【分类号】:TQ153.12
【相似文献】
相关期刊论文 前10条
1 陈邦义,梁成浩;铜基形状记忆合金及其耐蚀性研究进展[J];腐蚀科学与防护技术;2003年06期
2 ;日本新型强耐蚀性不锈钢研发成功[J];炼钢;2004年01期
3 孟宪钧,施靖中;低温镀铁耐蚀性能试验小结[J];材料保护;1984年01期
4 郭树启,隋全武,唐风军,刘钢;影响碳—铝复合材料耐蚀性的因素[J];复合材料学报;1991年03期
5 蔡兆勋;;耐蚀性的实验室测定方法[J];上海金属.有色分册;1992年06期
6 周长虹,王宗雄;提高铜/镍/铬体系耐蚀性的措施[J];电镀与精饰;1998年01期
7 徐立冲,陈中兴,马志伟,宋强;锌铬膜的制备及其耐蚀性能研究[J];腐蚀与防护;1998年03期
8 ;多孔质耐蚀性粉末冶金磁性材料的磁屏蔽效果[J];金属功能材料;1999年04期
9 王勇,宋旭日;喷瓷复合管道接头焊后耐蚀性研究[J];山东机械;1999年02期
10 王培智;1Cr18Ni9Ti不锈钢耐蚀性能研究[J];机械工程与自动化;2004年01期
相关会议论文 前10条
1 符寒光;邢建东;;提高油气管耐蚀性的工艺研究[A];第四届全国表面工程学术交流大会论文集[C];2001年
2 韩涛;王勇;陈玉华;;稀土对瓷釉涂层耐蚀性的影响[A];第十一次全国焊接会议论文集(第1册)[C];2005年
3 陈义庆;徐小连;李天统;王永明;钟彬;徐承明;武裕民;;冷轧家电板磷化后耐蚀性能的影响因素[A];第四届中国金属学会青年学术年会论文集[C];2008年
4 徐军;李谋成;沈嘉年;;低镍不锈钢的耐蚀性研究[A];第十三次全国电化学会议论文摘要集(下集)[C];2005年
5 王朝铭;;提高海尔冰箱白镀锌零件耐蚀性工艺技术研究与成本估算[A];2010’(贵阳)低碳环保表面工程学术论坛论文集[C];2010年
6 李伯琼;李志强;陆兴;;孔隙结构对多孔钛耐蚀性能的影响[A];第七届中国功能材料及其应用学术会议论文集(第5分册)[C];2010年
7 赵浩峰;苏俊义;;电缆用纤维增强复合丝线芯的耐蚀性研究[A];第五届中国功能材料及其应用学术会议论文集Ⅲ[C];2004年
8 刘双梅;刘道新;樊国福;李婕;;不锈钢化学钝化及耐蚀性研究[A];第四届中国功能材料及其应用学术会议论文集[C];2001年
9 胡光辉;吴辉煌;杨防祖;;化学镀Ni-P合金结构与耐蚀性关系[A];2004年全国电子电镀学术研讨会论文集[C];2004年
10 周灵平;李绍禄;黄桂芳;李德意;朱启良;;钢表面离子束类金刚石涂层耐磨耐蚀性能[A];第四届全国表面工程学术交流大会论文集[C];2001年
相关重要报纸文章 前9条
1 记者 孙延军;宝钢耐蚀性花纹板“领跑”市场[N];中国冶金报;2011年
2 郭廷杰 编译;耐蚀性和硬度兼优的不锈钢在日本投产[N];中国冶金报;2006年
3 高宏适;高氮钢的应用现状及未来发展[N];世界金属导报;2011年
4 廖建国;日本耐蚀性无缝钢管现状及其发展趋势[N];世界金属导报;2003年
5 郭廷杰;节能减排的新生力量[N];中国冶金报;2008年
6 郭;新日铁热镀锌板耐蚀性提高[N];中国冶金报;2000年
7 肖英龙;化学品船用NSSC 260A钢开发[N];世界金属导报;2010年
8 肖英龙;两种特殊用途不锈钢的开发[N];世界金属导报;2002年
9 全荣;汽车燃油箱用高耐蚀牲钢板的开发[N];世界金属导报;2012年
相关博士学位论文 前3条
1 刘坐东;改性表面冷却水微生物污垢与耐蚀性研究[D];华北电力大学(北京);2016年
2 刘彦章;反应堆用钛合金表面的离子注入及其耐蚀性和抗磨损机理研究[D];电子科技大学;2007年
3 宋大雷;Mg-Li合金表面分子筛膜的组装及耐蚀性研究[D];哈尔滨工程大学;2011年
相关硕士学位论文 前10条
1 薛军;压铸铝合金PVD层制备及其耐蚀性能的研究[D];华南理工大学;2015年
2 崔欢欢;电镀锌硅钛复合钝化工艺研究[D];昆明理工大学;2015年
3 徐笑梅;提高钢芯铝绞线耐蚀性的喷丸工艺开发与分析[D];山东大学;2015年
4 李俊俊;金属表面硅锆复合处理工艺及耐蚀性能研究[D];扬州大学;2015年
5 明振涛;热浸镀彩涂板腐蚀失效分析及耐蚀性能对比研究[D];浙江工业大学;2015年
6 赵轩;聚多巴胺膜层及其与氢氧化镁复合膜层对AZ31镁合金耐蚀性能影响研究[D];太原理工大学;2016年
7 杨龙岗;铝基非晶防护涂层的制备与耐蚀性能的研究[D];东北大学;2014年
8 朱广林;Mg和RE对Zn-23Al-0.3Si镀层的改性研究[D];东北大学;2014年
9 张萨如拉;铸态GWNK和ZWK系稀土镁合金的耐蚀性研究[D];东北大学;2014年
10 刘振云;铝合金组织结构对其耐蚀性能影响的研究[D];北方工业大学;2016年
,本文编号:1848383
本文链接:https://www.wllwen.com/kejilunwen/huagong/1848383.html