当前位置:主页 > 科技论文 > 化工论文 >

微通道内二氧化碳-水两相流动与传质实验研究

发布时间:2018-05-27 05:37

  本文选题:微通道 + 气-液两相流 ; 参考:《大连理工大学》2015年硕士论文


【摘要】:由于微反应器在化工领域的巨大优势,微反应器中的过程强化以及气-液两相流的研究受到了人们密切的关注。本文通过实验对微通道内气-液两相流动和传质规律进行了研究,旨在掌握微通道内气-液两相流动及传质规律,为后期强化微通道内传质提供理论指导。制备了1×lmm矩形截面微通道,矩形通道由亲水性(0=-43.7°)的铜板加工制成,然后用十八烷基硫醇溶液处理得到疏水表面(0=-114.6°),利用高速摄像仪考察了不同壁面润湿性下矩形微通道内二氧化碳-水气-液两相流型。在亲水微通道中观测到了泡状流、泡状-弹状流、Taylor流,其中Taylor流是主要流型;在疏水微通道中观测到了非对称弹状流、拉长的非对称弹状流、分层流,其中拉长的非对称弹状流和分层流是主要流型。利用1×lmm矩形截面亲水微通道和内径为1.08mm、1.26mmm的圆形玻璃毛细管,选用二氧化碳-水为工作流体,利用高速摄像仪考察了气、液表观流速和通道当量直径对微通道内Taylor流流体力学性质的影响。实验表明,76.9%的气泡的长度通常为通道当量直径的2-5倍,85.3%的液弹的长度通常为通道当量直径的1-4倍,77.4%的泰勒单元的长度通常为通道当量直径的5-8倍;气泡和液弹长度大体上随气、液表观流速之比的增大分别增大和减小,泰勒单元长度随气相表观流速变化复杂,但随液相表观流速的增大而减小;通道内的气泡、液弹和泰勒单元长度随通道当量直径的增大而增大;气泡运动速度UB与液弹平均运动速度Uslug的大小关系为:UslugUB1.28Uslug。搭建了微通道内CO2-H2O气-液两相流动及传质研究实验平台,利用酸碱滴定法测定微通道中C02的吸收量,考察了气、液表观流速和通道壁面润湿性对微通道内气液传质的影响。实验表明,微通道接触器比常规尺度气-液接触设备的液侧体积传质系数KLα至少要高1-2个数量级;随着气、液表观流速的增大,液弹内循环区域液体流动速度增大,组分在液弹中的混合增强,同时,单位时间单位通道横截面积通过的气液两相传质面积增大,故液侧体积传质系数kLα增大;由于亲水微通道和疏水微通道中两相流型不同,亲水微通道中气液相界面积大,而且液弹内循环区域液体流动也更快,故液侧体积传质系数KLα随通道壁面润湿性的增强而增大。
[Abstract]:Due to the great advantages of microreactors in chemical industry, the study of process strengthening and gas-liquid two-phase flow in microreactors has been paid close attention to. In this paper, the law of gas-liquid two-phase flow and mass transfer in microchannels is studied through experiments. The purpose of this study is to master the law of gas-liquid two-phase flow and mass transfer in microchannels, and to provide theoretical guidance for the later enhancement of mass transfer in microchannels. A 1 脳 lmm microchannel with rectangular cross-section was prepared. The rectangular channel was fabricated by copper plate with hydrophilic (0 ~ 43.7 掳). The hydrophobic surface was then treated with octadecyl mercaptan solution to obtain the hydrophobic surface. The CO2 / water gas-liquid two-phase flow patterns in rectangular microchannels with different wall wettability were investigated by high speed camera. In hydrophilic microchannels, bubbly flow, bubbly slug flow, Taylor flow is the main flow pattern, asymmetric slug flow, elongated asymmetrical slug flow and stratified flow are observed in hydrophilic microchannels. The elongated asymmetric slug flow and stratified flow are the main flow patterns. A 1 脳 lmm rectangular section hydrophilic microchannel and a circular glass capillary with an inner diameter of 1.08 mm or 1.26 mm were used to investigate the gas, using carbon dioxide and water as the working fluid. The effects of liquid apparent velocity and channel equivalent diameter on the hydrodynamic properties of Taylor flow in microchannels. The experimental results show that the bubble length of 76.9% is usually 2-5 times of channel equivalent diameter and 85.3% of channel equivalent diameter. The length of liquid bomb is usually 1-4 times that of channel equivalent diameter, and the length of Taylor unit with 77.4% channel equivalent diameter is usually 5-8 times that of channel equivalent diameter. The increase of the ratio of liquid apparent velocity increases and decreases respectively. The Taylor cell length changes with the gas phase apparent velocity, but decreases with the increase of liquid phase apparent velocity. The length of liquid bomb and Taylor unit increases with the increase of channel equivalent diameter, and the relationship between bubble velocity UB and the average moving velocity of liquid bomb Uslug is: 1. 28 Uslug. An experimental platform for CO2-H2O gas-liquid two-phase flow and mass transfer in microchannels was set up. The absorption of CO2 in microchannels was determined by acid-base titration. The effects of gas and liquid apparent velocity and wettability on gas-liquid mass transfer in microchannels were investigated. The experimental results show that the volumetric mass transfer coefficient KL 伪 of microchannel contactor is at least 1-2 orders higher than that of conventional gas-liquid contact equipment, and the liquid velocity increases with the increase of gas and liquid apparent velocity. At the same time, the gas-liquid two-phase mass transfer area passing through the cross-sectional area of unit channel per unit time increases, so the volumetric mass transfer coefficient (KL 伪) of the liquid side increases, because the two-phase flow patterns in hydrophilic microchannels and hydrophobic microchannels are different. The gas-liquid boundary area is large in hydrophilic microchannels, and the liquid flow is faster in the liquid-bomb circulation region, so the liquid-side mass transfer coefficient KL 伪 increases with the enhancement of the wettability of the channel wall.
【学位授予单位】:大连理工大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:TQ052

【相似文献】

相关期刊论文 前10条

1 陈永平;肖春梅;施明恒;吴嘉峰;;微通道冷凝研究的进展与展望[J];化工学报;2007年09期

2 胡雪;魏炜;雷建都;马光辉;苏志国;王化军;;T型微通道装置制备尺寸均一壳聚糖微球[J];过程工程学报;2008年01期

3 甘云华;杨泽亮;;轴向导热对微通道内传热特性的影响[J];化工学报;2008年10期

4 杨凯钧;左春柽;丁发喜;王克军;吕海武;曹倩倩;王吉顺;;微通道散热器长直微通道的新加工工艺研究[J];吉林化工学院学报;2011年09期

5 付涛涛;朱春英;王东继;季喜燕;马友光;;微通道内气液传质特性[J];化工进展;2011年S2期

6 卜永东;沈寅麒;杜小泽;杨立军;杨勇平;;仿蜂巢微通道分叉结构的甲醇重整制氢[J];化工学报;2013年06期

7 宋善鹏;于志家;刘兴华;秦福涛;方薪晖;孙相_g;;超疏水表面微通道内水的传热特性[J];化工学报;2008年10期

8 李彩霞;王斯民;胡鹏睿;;等壁温下平行微通道内层流换热的数值模拟[J];化学工程;2012年03期

9 李鑫;陈永平;吴嘉峰;施明恒;;宽矩形硅微通道中流动冷凝的流型[J];化工学报;2009年05期

10 马璨;袁惠新;杨振东;鲁娣;;微反应器矩形微通道截面高宽比对流速的影响[J];环境科学与技术;2009年10期

相关会议论文 前10条

1 史东山;李锦辉;刘赵淼;;关于微通道相关问题研究方法现状分析[A];北京力学会第18届学术年会论文集[C];2012年

2 逄燕;刘赵淼;;温黏关系对微通道内液体流动和传热性能的影响[A];北京力学会第18届学术年会论文集[C];2012年

3 范国军;逄燕;刘赵淼;;微通道中液体流动和传热特性的影响因素概述[A];北京力学会第18届学术年会论文集[C];2012年

4 刘丽昆;逄燕;刘赵淼;;几何参数对微通道液体流动和传热性能影响的研究[A];北京力学会第18届学术年会论文集[C];2012年

5 刘丽昆;刘赵淼;申峰;;几何参数对微通道黏性耗散影响的研究[A];北京力学会第19届学术年会论文集[C];2013年

6 肖鹏;申峰;刘赵淼;;微通道中矩形微凹槽内流场的数值模拟[A];北京力学会第19届学术年会论文集[C];2013年

7 肖鹏;申峰;刘赵淼;李易;;凹槽微通道流场的三维数值模拟[A];北京力学会第20届学术年会论文集[C];2014年

8 周继军;刘睿;张政;廖文裕;佘汉佃;;微通道传热中的两相间歇流[A];上海市制冷学会2011年学术年会论文集[C];2011年

9 夏国栋;柴磊;周明正;杨瑞波;;周期性变截面微通道内液体流动与传热的数值模拟研究[A];中国力学学会学术大会'2009论文摘要集[C];2009年

10 娄文忠;Herbert Reichel;;硅微通道致冷系统设计与仿真研究[A];科技、工程与经济社会协调发展——中国科协第五届青年学术年会论文集[C];2004年

相关重要报纸文章 前2条

1 本报记者 陈杰;空调将进入微通道时代[N];科技日报;2008年

2 张亮;美海军成功为未来武器研制微型散热器[N];科技日报;2005年



本文编号:1940683

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/huagong/1940683.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户b86b5***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com