天然矿物荷电陶瓷膜的制备及其性能
发布时间:2018-06-21 15:00
本文选题:天然矿物 + 二氧化硅支撑体 ; 参考:《膜科学与技术》2016年03期
【摘要】:采用悬浮粒子法制备天然矿物纳米级陶瓷膜.压汞仪和扫描电镜的结果表明,所制备陶瓷膜的孔径在3~12nm之间,厚度约30μm.X射线衍射分析的结果说明,烧结过程发生了kaolinite相的转变;对比原料粉体与膜的红外光谱结果发现,烧结后,膜层内依然保留大量内羟基,且Al—O—Al键也得到增强;X-射线荧光光谱的结果显示,天然矿物以SiO_2和Al_2O_3为主,从而推断原料应属于页硅酸盐.通过死端截留,得到膜的纯水通量为1 456L/(m~2·h·MPa),其对磷酸三钠(Na_3PO_4)具有良好的截留性能,随盐浓度的升高,截留率有所下降,但下降幅度减小.膜的动电性质表明,Na_3PO_4溶液中的膜表面具有负电势,其对磷酸盐的高截留率源于膜表面与PO_4~(3-)的静电排斥作用.
[Abstract]:Nano-sized ceramic membranes of natural minerals were prepared by suspension particle method. The results of mercury porosimeter and scanning electron microscope showed that the pore size of the prepared ceramic membrane was between 3~12nm and the thickness of 30 渭 m 路m. X ray diffraction analysis showed that the phase transition of kaolinite occurred in the sintering process, and compared with the infrared spectra of the raw powder and the film, it was found that, After sintering, a large number of hydroxyl groups remained in the film, and the Al-O-Al bond was also enhanced by X- ray fluorescence spectra. The results showed that the natural minerals were Sio _ 2 and Al _ 2O _ 3, which suggested that the raw materials should belong to pagosilicate. By dead end interception, the pure water flux of the membrane was 1 456 L / m ~ (-1) 路m ~ (2 +) MPA, which had a good retention performance to Na3PO _ (4). With the increase of salt concentration, the retention rate decreased, but the decrease range was decreased. The electrokinetic properties of the membrane indicate that the surface of the membrane has negative potential and its high rejection rate to phosphate is due to the electrostatic repulsive effect between the membrane surface and the PO4 / P _ 4 ~ (3).
【作者单位】: 北京工商大学材料与机械工程学院;北京化工大学化工资源有效利用国家重点实验室;中国航天科技集团公司第一研究院第七0三研究所;
【基金】:国家高技术研究发展计划项目(2009AA03Z802) 北京工商大学青年教师科研启动基金(QNJJ2015-30)
【分类号】:TQ174.75
【相似文献】
相关期刊论文 前3条
1 寇丽华;日本INAX开发新型机械陶瓷[J];无机盐工业;1989年01期
2 吴季怀,张敬阳,魏从容,赵煌,沈振;天然矿物的深加工及其在橡塑弹性体中的应用[J];华侨大学学报(自然科学版);1997年04期
3 ;[J];;年期
相关硕士学位论文 前1条
1 赵紫娟;天然矿物陶瓷微滤膜的制备及其对无机离子的去除机理研究[D];北京化工大学;2014年
,本文编号:2049149
本文链接:https://www.wllwen.com/kejilunwen/huagong/2049149.html