电芬顿法处理络合铜镍电镀废水试验研究
[Abstract]:The complex heavy metal in electroplating wastewater is the key point in the treatment of this kind of wastewater, and the key to the effective removal of complex heavy metals lies in the breaking of the complex. At present, Fenton oxidation is often used to break the wastewater, but this method has many problems, such as high sludge yield, long residence time and low utilization rate of chemicals. Compared with the traditional Fenton method, the electric Fenton method has the advantages of high utilization ratio of H_2O_2 and Fe2, low sludge production and so on. It can effectively treat the electroplating wastewater containing complex heavy metals and avoid the shortcomings of the traditional Fenton process. The selection of electrode materials is very important in electric Fenton. Although there have been many related research results, the preparation of electrode materials is difficult and the price is too high to be applied in practice. In this paper, iron, aluminum and graphite, which are easily available in the market and low price, will be taken as the research object. By comparing the treatment effect and cost of different electrode materials for wastewater containing Ni-EDTA and Cu-EDTA, the optimal electrode materials which can be used in practical engineering will be selected. On the basis of this, the suitable operating condition parameters of the process are determined by small scale test and pilot-scale operation. The main factors affecting the treatment of copper and nickel complex wastewater by electric Fenton method with iron, aluminum and graphite as electrodes were investigated through a small scale experiment. The treatment efficiency and treatment cost of the three electrode materials under the optimum conditions were compared synthetically. The experimental results show that the three electrode materials, electric Fenton method, have a good removal effect on both Ni-EDTA and Cu-EDTA simulated wastewater. After comprehensive comparison, the iron electrode is optimal. When the initial pH value is 2.0, the current density is 20 Ma / cm ~ (-2) and the hydrogen peroxide dosage is 6 mL/L h, the removal rates of Ni and Cu are 98.54% and 99.8% respectively, and the comprehensive cost is 12.75 yuan / ton water. The process parameters and characteristics of Cu/Ni-EDTA wastewater were optimized by using simulated wastewater. The experimental results show that when the electrode spacing is 2 cm, the current density is 20 Ma / cm ~ (-2), the hydrogen peroxide is continuously added and the dosage is 6 mL/L / h, the existence of heavy metal to achieve a better removal effect. Citric acid and hypophosphate can inhibit the electric Fenton method of iron electrode. The removal of Ni and Cu in the treatment of Cu/Ni-EDTA simulated wastewater by ferroelectric Fenton method was mainly carried out by flocculation and precipitation of metal ions and hydroxide precipitation by adding OH-. At the same time, a small amount of metal ions moved to the plate with the current adsorption and removal. For the actual wastewater, the main process parameters of the electric Fenton process were determined under the conditions of different complex state heavy metal concentrations (2-30 mg/L). Under the conditions of residence time 0.5 ~ (-1) h, hydrogen peroxide dosage 3.4-8.5 mL/L / h, current density 20-30 mA/cm~2, Cu and Ni can be discharged stably, and COD and TP can be removed to some extent.
【学位授予单位】:哈尔滨工业大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:X781.1
【相似文献】
相关期刊论文 前10条
1 肖华,周荣丰;电芬顿法的研究现状与发展[J];上海环境科学;2004年06期
2 张先炳;袁佳佳;董文艺;杨伟;;芬顿法处理活性艳红X-3B的试验优化及降解规律[J];化工学报;2013年03期
3 詹乐音;张敏芝;霍鹏;;芬顿法处理难降解有机废水的研究与应用[J];中小企业管理与科技(上旬刊);2013年07期
4 石申;刘正伟;奚吉;金少波;周宇松;;阴极电芬顿法电极材料的选择及处理印染废水的研究[J];兵器材料科学与工程;2014年01期
5 王伟;初本莉;王嘉承;;过硫酸盐法和芬顿法降解有机物的对比研究[J];广州化工;2013年22期
6 巩峰;单明军;公彦欣;巩菲丽;;煤焦油加工废水的酸化—芬顿法预处理[J];绿色科技;2012年02期
7 娄本浊;;电解芬顿法处理三硝基甲苯废水中有机物的研究[J];应用化工;2012年09期
8 张晓飞;杨春鹏;俞英;;芬顿法和湿式过氧化氢氧化法处理醇酮模拟水的研究[J];油气田环境保护;2012年06期
9 杨成龙;;芬顿法处理二氯丁二烯废水的试验研究[J];科技资讯;2013年03期
10 常文贵,朱果逸;电解芬顿法处理工业废水[J];化学研究与应用;2004年05期
相关会议论文 前5条
1 任培兵;冯燕;韩世宝;杜云峰;;芬顿法处理双氧水生产废水的研究与应用[A];苏、鲁、皖、赣、冀五省金属学会第十四届焦化学术年会论文集[C];2008年
2 杨国姣;欧晓霞;董玉瑛;范凯;;草酸和腐殖酸对芬顿法降解罗丹明B的影响研究[A];第六届全国环境化学大会暨环境科学仪器与分析仪器展览会摘要集[C];2011年
3 徐家龙;史贤备;徐水侠;;电芬顿法降解对硫磷研究[A];西北地区第七届色谱学术报告会甘肃省第十二届色谱年会论文集[C];2012年
4 张洪迪;;造纸PVA废水芬顿法处理后达标排放[A];全国特种纸技术交流会暨特种纸委员会第八届年会论文集[C];2013年
5 何文妍;马红竹;;电化学类芬顿法与活性氯协同作用降解甲基橙染料废水[A];第六届全国环境化学大会暨环境科学仪器与分析仪器展览会摘要集[C];2011年
相关博士学位论文 前1条
1 李春娟;芬顿法和类芬顿法对水中污染物的去除研究[D];哈尔滨工业大学;2009年
相关硕士学位论文 前8条
1 吴阳;电芬顿法处理络合铜镍电镀废水试验研究[D];哈尔滨工业大学;2017年
2 陈聪;新型镍电极电芬顿法预处理印染废水效能研究[D];哈尔滨工业大学;2015年
3 王平;芬顿法应用于染料工业园区废水深度处理的技术研究与评价[D];北京化工大学;2015年
4 杨芳;芬顿法和生物法降解染料过程中生物毒性变化研究[D];东华大学;2016年
5 王中旭;应用修饰碳电极电芬顿法降解纤维素的研究[D];河北工业大学;2011年
6 董宏;电芬顿法处理船舶油废水的动力学及其仿真系统研究[D];大连海事大学;2008年
7 刘鑫;三种高浓度印染废水的处理研究[D];兰州理工大学;2010年
8 常文贵;电化学高级氧化技术在水处理中的应用[D];安徽大学;2003年
,本文编号:2145844
本文链接:https://www.wllwen.com/kejilunwen/huagong/2145844.html