多重透射反射红外光谱(MTR-IR)测量晶硅薄片碳氧含量和晶硅表面高分子刷图案化
[Abstract]:In the process of producing silicon wafers by CZ direct drawing, because of the use of quartz (Si02) crucible and graphite (C) heating components, oxygen carbon impurities will be introduced to different degrees in the process of melting silicon. Oxygen is in the form of interstitial atoms in the form of interstitial oxygen (InterstitialOxygen, Oi). The position of carbon in silicon crystal is called substitution of silicon atoms. Substitutional Carbon (Cs). Interstitial oxygen and subrogation carbon are the most important forms of oxygen and carbon in Si (CZ) silicon. Their content not only affects the intrinsic absorption of silicon materials, but also influences the physical and electrical properties of the materials. The disadvantage of oxygen is to produce micro defects, and the advantage is to produce pinning effect on the extension of dislocation. In order to enhance the strength of the silicon wafer, its intrinsic impurity absorption technology can prevent the production of defects in the production process. The high carbon content affects the nucleation and precipitation of oxygen, and also leads to the softening and two breakdown of the devices. Therefore, the control of oxygen and carbon content in silicon becomes a means to improve the material performance. However, the control of oxygen carbon content must first be measured accurately. A double block copolymer polystyrene polyvinyl pyridine (polystyrene-block-poly- (4-vinyl pyridine), PS-b-P4VP; polystyrene-block-poly- (2-vinyl pyridine), PS-b-P2VP) is separated at different treatment conditions and produces a certain rule pattern. The double block copolymer is made into a template with different morphologies, such as dot and linear strip. And then using these templates, using Hydroflouricacid (HF) corrosion, oxygen plasma etching, reactive ion etching (Reactive Ion Etching, RIE), and other techniques, such as Reactive Ion Etching, RIE, and other techniques made of alternating intervals of Si-Hx ends and SiOx, and then inoculating various polymer brushes on the basis of these patterns. To achieve various functions, such as integrated circuits, biochips, micro chemical reactors, and so on. In this paper, in this paper, we use Multiple Transmission-Re flection Infrared Spectroscopy (MTR-IR) method for single crystal silicon, thin monocrystalline silicon, and interstitial carbon and interstitial oxygen in solar cells. The content was analyzed by infrared quantitative analysis and related theory. Two, using photolithography and block copolymer etching technology to assemble polymethacrylic acid (Polymethacrylic Ac-id, PMAA), hydroxyethyl methacrylate (2-HydroxyethylMethacrylate, HEMA), Polymethylmethacrylate, PMMA, poly N- isopropyl on the silicon surface N-Iso Propyl acrylamide (PNIPAM) polymer brushes make it more regular patterned. The main contents and results of this paper are as follows: 1, MTR-IR and IR methods for measuring the content of intermediate gap oxygen and subrogation carbon in solar cell silicon wafers. We have recently opened a multiple transmission reflection Fu Liye transform infrared spectroscopy. The method (MIR-IR) is used to measure the content of intermediate gap oxygen (Oi) and subrogation carbon (Cs) in solar cell silicon. Compared with the traditional IR (Infrared) method, it is found that the oxygen absorption peak near 1107 cm-1 can enlarge the 9~10 times of the signal amplification, and the carbon absorption peak at 605 cm-1 can magnify the signal 7~8 times, thus the original detection limit can be reduced. The results of repeated measurements confirm the accuracy and reproducibility of the MTR-IR method. In addition, compared to the vertical incidence and the single transmission of Brewster angle, the MTR method can greatly reduce the amplitude of the interference fringes caused by the multiple reflection and transmission of the thin silicon wafer (thickness less than 0.3 mm). The mechanism of stripe reduction is discussed. One is the integral ball effect (cancellation interference), that is, the wave peak of reflected light and transmitted light is added and offset respectively. Two is that the P polarized light is not reflected in the Brewster angle (no reflection inside the silicon wafer), and all through, thus reducing the dry fringe. And using the P polarized light calculation formula to 0.1mm, 0.2 mm thin. The substitution carbon and the gap oxygen content in the silicon wafer were calculated. The infrared spectra of the thin silicon wafers with S polarized light and P polarized light were simulated, and the reason that the p polarization absorption peak was always higher than the S polarization absorption peak was explained. The distribution of carbon and oxygen content in the polysilicon was analyzed, and the middle gap oxygen and the subrogation carbon content of the 1 mm polysilicon were carried out. The measurements were compared with the IR method. Both the accuracy and the reproducibility were better than the IR.2, and the block copolymer PS-b-P4VP was used as a template to prepare the polymer brush lattice nanoscale pattern. The two amphiphilic block copolymer PS-b-P4VP was self assembled into a micelle in the toluene solution, and PS was formed on the silicon wafer to form a matrix background, and P4VP formed out of the PS matrix back. The circular point of the 50~80nm in the scene is corroded by a dilute HF solution. The corrosion mechanism is that the P4VP micelle is hydrophilic and the HF can make the pyridine rings protonated in P4VP, so the etching selectively occurs under the P4VP micelles. The surface suspended Si-H is obtained by etching the plane silicon with a dilute HF solution. The X bond is covalently coupled to the monolayer of the terminal alkyl bromide initiator by the hydrosilylation reaction, and the terminal TERT alkyl bromide can trigger the surface atom transfer radical polymerization (Surface-Induced Atom Transfer Rad icalPolymerization, SI-ATRP), using the monomer methyl methacrylate (HEMA), sodium methacrylate (NaMA), methyl propyl Methyl enate (MMA) and N- isopropyl acrylamide (NIPAM) have been assembled on the silicon surface by a variety of polymer brushes, Si-g-Poly (HEMA/PMAA/PMMA/PNIPAM), and a lattice pattern on the convex surface is obtained. The whole process is detected by multiple transmission reflectance infrared spectroscopy (MTR-IR), atomic force microscopy (AFM) and scanning electron microscopy (SEM). The formation process of the polymer brush pattern array on the silicon surface.3, the block copolymer PS-b-P2VP is used as a template to prepare the polymer brushed linear or fingerprint like nanoscale pattern. Two Pro block copolymer PS-b-P2VP is self assembled into a micelle in the toluene solution, and PS is formed on the silicon wafer to form a matrix background, and P2VP forms a 20~30 nm that outburst the background of the PS matrix. And then put 30~40 h at room temperature at room temperature in a 10:1 THF/H2O solvent vapor tight environment, forming a PS-b-P2VP straight strip or fingerprint pattern, then soaking 3~24 h in Na2PtCl4/HCl solution, combining positive charge [P2VP]+ with negative charged [PtCl4]2- electrostatic attraction together, removing PS-b-P2VP with O2 plasma treatment, and making Na2 PtCl4 generates Pt lines. Using 1:1:4 HF/H2O2/EtOH anode assisted solution corrosion, the linear or fingerprint stripes between 50 and 80nm and 30~50 nm are obtained. The mechanism of corrosion is the primary cell reaction mechanism at the site of Pt. Finally, the PMAA is assembled at the nanoscale pits at the line stripe. The pattern of line or fingerprint like PMAA pattern is obtained. The morphology was observed by scanning electron microscope (SEM) and atomic force microscope (AFM).
【学位授予单位】:南京大学
【学位级别】:博士
【学位授予年份】:2015
【分类号】:TQ127.2
【相似文献】
相关期刊论文 前10条
1 李吕qG,赵国良;嵌段共聚物微观分相理论[J];大连工学院学报;1980年01期
2 罗筱烈,马德柱,蒋文博;聚对苯二甲酸丁二醇酯-聚∈-己内酯嵌段共聚物链化学结构研究[J];中国科学技术大学学报;1990年02期
3 许晓秋,,黄树基,李凤英,邢利燕,孙佳年,孙杨;乙丙嵌段共聚物结构与性能的关系[J];天津大学学报;1994年04期
4 李欣欣,林佳雄,吴平平,韩哲文;原子转移自由基聚合制备含氟嵌段共聚物及其性能[J];化学世界;2000年S1期
5 傅志峰,杨万泰;原子转移自由基聚合制备嵌段共聚物的研究进展[J];北京化工大学学报(自然科学版);2000年03期
6 李虹,张兆斌,胡春圃,应圣康;利用原子转移自由基聚合制备水溶性含氟嵌段共聚物(英文)[J];合成橡胶工业;2001年05期
7 梁晖,卢江,胡静,邓云祥;苯乙烯/α-蒎烯嵌段共聚物的性能研究[J];石油化工;2001年05期
8 常怀春,吕通建,郭文生;聚甲基丙烯酸甲酯-聚丙烯酰胺嵌段共聚物的合成与表征[J];应用化学;2001年08期
9 李鲲,郭建华,李欣欣,吴平平,韩哲文;原子转移自由基聚合合成甲基丙烯酸丁酯与丙烯酸全氟烷基乙酯两嵌段共聚物及其性能的研究[J];高分子学报;2002年02期
10 张爱英,冯增国,张勇,巴建华;聚乙二醇-b-聚对苯二甲酸丁二醇酯嵌段共聚物降解行为的研究[J];高等学校化学学报;2003年06期
相关会议论文 前10条
1 黄建花;;双亲水嵌段共聚物存在下纳米球自聚集的计算机模拟[A];中国化学会第二十五届学术年会论文摘要集(下册)[C];2006年
2 李一鸣;;嵌段共聚物与结构不同的阴离子表面活性剂之间相互作用的对比研究[A];中国化学会第十二届胶体与界面化学会议论文摘要集[C];2009年
3 赵玉荣;陈天宇;王新平;;成膜条件对苯乙烯/丁二烯嵌段共聚物表面结构的影响[A];中国化学会第十二届胶体与界面化学会议论文摘要集[C];2009年
4 施泽华;闵博飞;吴斌;谌东中;;新型线性-树枝状嵌段共聚物液晶的设计合成与表征[A];2009年全国高分子学术论文报告会论文摘要集(上册)[C];2009年
5 李学进;梁好均;;嵌段共聚物体系的多尺度分子模拟研究[A];2009年全国高分子学术论文报告会论文摘要集(上册)[C];2009年
6 李玉虎;宫玉梅;何天白;;溶剂择优亲和性对溶液浇铸嵌段共聚物薄膜相行为的影响[A];2009年全国高分子学术论文报告会论文摘要集(上册)[C];2009年
7 于彬;李宝会;史安昌;;两嵌段共聚物在多种受限环境中的自组装结构[A];中国化学会第27届学术年会第07分会场摘要集[C];2010年
8 汪蓉;;嵌段共聚物薄膜相行为的理论模拟[A];中国化学会第27届学术年会第07分会场摘要集[C];2010年
9 魏朵;郭荣;;嵌段共聚物的亲疏链长度对亲水改性布洛芬/嵌段共聚物复合聚集体结构的影响[A];中国化学会第27届学术年会第13分会场摘要集[C];2010年
10 王非;李春忠;;定向嵌段共聚物薄膜制备纳米孔阵列模板[A];2004年全国高分子材料科学与工程研讨会论文集[C];2004年
相关重要报纸文章 前4条
1 刘霞;分子“模板”可控制合成材料的形状[N];科技日报;2010年
2 陶文;陶氏推出九款开发型烯烃嵌段共聚物[N];中国化工报;2008年
3 本报首席记者 姜澎;他在黑暗的未知中寻找光明[N];文汇报;2012年
4 记者 吴苡婷;在微观世界中精准重构[N];上海科技报;2012年
相关博士学位论文 前10条
1 高广政;含多肽嵌段共聚物的合成与性能[D];复旦大学;2007年
2 刘美娇;嵌段共聚物自组装形成复杂结构的理论研究[D];复旦大学;2013年
3 王亚芬;组装体的形貌、结构调控及机制[D];复旦大学;2013年
4 江志斌;高分子在受限条件下的构象和自组装的理论模拟[D];南京大学;2014年
5 马世营;不同拓扑结构的两亲性嵌段共聚物在溶液中自组装的理论模拟研究[D];南京大学;2015年
6 于一涛;马来酸酐改性苯乙烯/丁二烯嵌段共聚物的RAFT细乳液聚合与表征[D];浙江大学;2011年
7 田洲;高性能多相聚丙烯共聚物制备的新方法—气氛切换聚合过程及其模型化[D];浙江大学;2012年
8 刘伟峰;乙烯/辛烯溶液共聚及其聚合物链结构的调控[D];浙江大学;2014年
9 黄杰;RAFT乳液聚合制备聚(苯乙烯—丙烯腈)嵌段共聚物及其共混物性能[D];浙江大学;2015年
10 李超;二茂铁基和(或)偶氮苯基化合物及其嵌段共聚物的合成及性能研究[D];浙江大学;2015年
相关硕士学位论文 前10条
1 张婷婷;两嵌段共聚物在几何受限下的自组装动力学研究[D];宁夏大学;2015年
2 张元中;双亲嵌段共聚物 PSt-b-P(St-alt-MA)-b-PAA的自组装行为和乳化性能研究[D];南京理工大学;2015年
3 朱晓玉;固体表面介导十二烷基磺基甜菜碱和双亲嵌段共聚物Pluronic P123聚集体结构转化研究[D];山东大学;2015年
4 陈汀;嵌段共聚物PS-b-PLA薄膜自组装形貌和结构及应用的研究[D];上海交通大学;2015年
5 王德强;基于N-乙烯基己内酰胺的线形和四臂星形聚合物研究[D];云南师范大学;2015年
6 马陈雷;共价键与多重氢键键合的聚乳酸/聚乙二醇嵌段共聚物的制备与溶液自组装[D];浙江大学;2015年
7 姜文博;复杂嵌段共聚物在球形空间受限情况下的自组装[D];温州大学;2015年
8 任锴;基于聚异丁烯的嵌段共聚物的合成、表征及在生物医用材料中的应用[D];苏州大学;2015年
9 张晨;基于二噻吩并噻咯的荧光小分子和全共轭嵌段共聚物的合成、表征及性能研究[D];杭州师范大学;2015年
10 周强;荧光温敏性丁二烯橡胶的合成及性能研究[D];北京化工大学;2015年
本文编号:2145863
本文链接:https://www.wllwen.com/kejilunwen/huagong/2145863.html