氧化铝陶瓷磨削温度的有限元仿真及试验研究
[Abstract]:Alumina ceramics have been used in many fields for their excellent physical and chemical properties, but it is also a typical refractory material. At present, alumina ceramics are mainly ground by diamond abrasive tools. The removal mechanism of ceramic materials is closely related to grinding temperature. However, there are still many problems in measuring and analyzing the actual grinding temperature of alumina ceramics. In this paper, the grinding temperature of alumina ceramics with single diamond abrasive, finite diamond abrasive and uniformly arranged diamond abrasive particles is studied. The grinding force and temperature of a single abrasive particle were measured and compared with the results of the finite element simulation model with thermocouple. The heat distribution ratio of the workpiece was corrected to optimize the simulation model. On this basis, the effects of thermocouple, grinding parameters, abrasive particle number and abrasive particle position on grinding temperature are studied. The main research results are as follows: 1. The experimental and simulation results show that the grinding temperature increases with the increase of feed speed and grinding speed. Under the same heat source strength condition, the addition of thermocouple will lead to the increase of grinding temperature value, and the increase amplitude is related to the processing parameters. 3. By fitting the test temperature with the simulation temperature, the heat distribution ratio of the imported workpiece is corrected. The heat distribution ratio 位 increases with the increase of grinding depth and grinding wheel speed, and the fluctuation range is large. 4. The number and amplitude of thermal pulse signal obtained by grinding temperature measurement are closely related to the distribution of abrasive particles after thermocouple. Axial distribution of abrasive particles will affect the intensity of thermal pulses, while circumferential particles will affect the number of thermal pulses. Under the same grinding conditions, the increase of heat source of abrasive particles will lead to the increase of grinding temperature. The grinding temperature signal obtained by temperature measurement is the result of the interaction of several abrasive particles.
【学位授予单位】:华侨大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TQ174.1
【相似文献】
相关期刊论文 前10条
1 汤艳玲,黄辉;磨削温度研究的现状与进展[J];珠宝科技;2003年04期
2 张冬梅;刘传绍;赵波;焦锋;高国富;;磨削温度理论研究的现状与进展[J];工具技术;2006年05期
3 史建茹;黄大宇;董智勇;;基于网络的监测技术在磨削温度监控上的应用[J];中原工学院学报;2007年04期
4 董智勇;;基于网络的磨削温度红外监测系统研究[J];微型电脑应用;2008年09期
5 梁松坚;刘亚俊;张发英;;用飞升响应曲线法校准磨削温度信号的研究[J];工具技术;2010年06期
6 孟庆国,李文卓;磨削温度场的数值计算[J];机械工艺师;1996年10期
7 于云霞,孟庆国,李文卓;磨削温度场的分析与计算[J];管道技术与设备;1996年03期
8 王霖 ,秦勇 ,刘镇昌 ,葛培琪 ,孙建国 ,高伟;计算机仿真技术在磨削温度场中的应用[J];工具技术;2001年10期
9 兰雄侯,王继先,高航;磨削温度理论研究的现状与进展[J];金刚石与磨料磨具工程;2001年03期
10 董涛,李迎,侯丽雅;磨削温度在线监控系统的预报建模[J];中国机械工程;2002年05期
相关硕士学位论文 前10条
1 胡海峰;成形磨齿工艺参数对磨削温度的影响规律及试验研究[D];河南科技大学;2015年
2 邱奕;Cr12MoV模具钢磨削温度场及残余应力研究[D];湘潭大学;2015年
3 吕自强;聚焦超声冷却系统在精密磨削加工中的应用研究[D];河南工业大学;2015年
4 郭珍吉;超高速磨削温度的仿真研究[D];东北大学;2014年
5 何铨鹏;超高速离心磨削工艺稳健性研究[D];广州大学;2016年
6 徐杨;点磨削温度场及轴向传热机制研究[D];东北大学;2013年
7 张国华;超高速磨削温度的研究[D];湖南大学;2006年
8 李平化;特殊金属磨削温度的有限元仿真与实验研究[D];湖南大学;2011年
9 李荣洲;高硬度涂层材料磨削温度场的试验研究与模拟仿真[D];上海交通大学;2009年
10 马生彪;磨削加工过程振动仿真与磨削温度预测[D];郑州大学;2011年
,本文编号:2272773
本文链接:https://www.wllwen.com/kejilunwen/huagong/2272773.html