卫星近红外偏振通道反演气溶胶光学厚度的气溶胶模型影响
本文关键词:卫星近红外偏振通道反演气溶胶光学厚度的气溶胶模型影响 出处:《红外与毫米波学报》2016年05期 论文类型:期刊论文
更多相关文章: 气溶胶模型 气溶胶光学厚度 偏振遥感 反演误差
【摘要】:卫星偏振测量是气溶胶遥感的一种重要手段.气溶胶模型的准确性是影响卫星遥感气溶胶参数精度的关键因素之一.在卫星反演气溶胶算法中,若忽略气溶胶粗模态贡献(星载偏振传感器气溶胶反演的一种常用假设)或选错气溶胶类型,均会带来反演结果的误差.基于六种典型的气溶胶类型(沙尘型、生物质燃烧型、乡村背景型、污染大陆型、污染海洋型和重污染型)模型,模拟研究了气溶胶模态和类型选择对卫星近红外偏振通道反演气溶胶光学厚度(AOD)的影响.利用矢量的辐射传输模式,模拟分析了六种气溶胶类型在865 nm波长的大气偏振反射分布函数(BPDF);发现大气BPDF与气溶胶粒子尺度密切相关,粗模态对大气BPDF的贡献远小于细模态;粗、细模态同时存在时,大气BPDF反而小于仅细模态时的BPDF.在此基础上,分析了"忽略粗模态贡献"和"选择错误气溶胶类型"两种情况下AOD的反演误差,得到如下结论:(1)忽略气溶胶粗模态贡献,会导致反演的细模态气溶胶光学厚度(AOD_f)偏小.六种典型气溶胶类型模型情况下,AOD_f反演结果可偏低12.3%~35.7%,其中沙尘型气溶胶时AOD_f反演误差最大,污染大陆型气溶胶时AOD_f反演误差最小.(2)若气溶胶类型选择错误,反演的AOD可能偏大或偏小,取决于与气溶胶类型对应的大气BPDF的差别.测试的六种气溶胶类型中,沙尘型与重污染型的大气BPDF差别最大,二者互换(即"选择错误")时,AOD反演误差最大,分别可达220.3%或-60.6%;乡村背景型与污染大陆型的大气BPDF差别最小,两者互换时,AOD反演误差最小,分别为7.1%和-3.0%.研究结果对于发展新一代星载偏振传感器及其气溶胶反演算法研究具有参考价值.
[Abstract]:......
【作者单位】: 中国科学院遥感与数字地球研究所国家环境保护卫星遥感重点实验室;中国科学院大学;
【基金】:国家高技术研究发展计划(2012AA12A104-3) 中国科学院战略性先导科技专项(XDA05100202) 国家自然科学基金项目(41222007) 中国科学院重点部署项目(KZZD-EW-TZ-18)~~
【分类号】:X513;X87
【正文快照】: PACS:92.20.Bk引言气溶胶受自然和人为因素影响,具有复杂的来源和转化机制,可大致分为乡村型、城市型、海洋型及沙漠型等类型,不同类型的气溶胶具有显著差异的化学成分和物理形态(复折射指数、粒子谱分布、粒子形状等)及相应的光学性质(单次散射反照率(single-scattering albe
【相似文献】
相关期刊论文 前10条
1 张文华;陶申鑫;梁保英;;某市气溶胶的分布特征研究[J];上海环境科学;1993年02期
2 崔祖强;郑志宏;;从归一化植被指数提取气溶胶光学信息[J];广东气象;2006年02期
3 丛丕福;曲丽梅;陈艳拢;张丰收;张昕阳;;渤黄海上空气溶胶遥感探测与分析[J];海洋环境科学;2008年S2期
4 ;第七届亚洲气溶胶会议在西安召开[J];科学通报;2011年26期
5 张群英 ,吴德强;指数过滤规律假设在多分散度钚气溶胶浓度监测中的适用性考察[J];辐射防护;1983年06期
6 石志侠;苏万新;;气溶胶采样技术简介(一)[J];辐射防护通讯;1986年02期
7 尤一安,马英,梁保英,黄振华,杨立进;沪宁沿江地区气溶胶可溶盐的分布特征与来源研究[J];电力环境保护;1997年04期
8 李庆伟;肖凯涛;;气溶胶采样过程中流量控制技术[J];火工品;2008年03期
9 李本纲;冉阳;陶澍;;北京市气溶胶的时间变化与空间分布特征[J];环境科学学报;2008年07期
10 刘兆平;孙华;;浦口地区气溶胶和气象条件的关系[J];环境科学研究;1996年01期
相关会议论文 前9条
1 陈跃;刘红杰;杨文;王建平;徐鸣之;武玉忠;杨连英;王晨;;直路式等速负压多级稀释气溶胶风洞检测系统[A];第十五届全国云降水与人工影响天气科学会议论文集(Ⅱ)[C];2008年
2 杨辉;刘文清;刘建国;陆亦怀;;气溶胶监测红外激光雷达[A];中国气象学会2006年年会“大气成分与气候、环境变化”分会场论文集[C];2006年
3 孙贞;徐晓亮;侯忠新;丁锋;;青岛市不同物源性质气溶胶质量浓度特征初探[A];第十五届全国云降水与人工影响天气科学会议论文集(Ⅱ)[C];2008年
4 吴艳敏;王旭辉;刘龙波;张自禄;;高流速下气溶胶取样滤材的性能测试[A];第二届全国环境化学学术报告会论文集[C];2004年
5 介冬梅;胡克;;东北地区沙尘暴粉尘气溶胶的成分组成与来源分析[A];大气气溶胶科学技术研究进展——第八届全国气溶胶会议暨第二届海峡两岸气溶胶科技研讨会文集[C];2005年
6 司福祺;刘建国;谢品华;玉钧;刘文清;;近地面大气气溶胶差分吸收光谱技术监测研究[A];第九届全国气溶胶会议暨第三届海峡两岸气溶胶技术研讨会论文集[C];2007年
7 黄宪果;涂俊;穆龙;陈功;游泽云;张德馨;;钚气溶胶快速测量技术研究[A];全国放射性流出物和环境监测与评价研讨会论文汇编[C];2003年
8 杨辉;刘文清;陆亦怀;;一种气溶胶监测激光雷达[A];中国气象学会2007年年会大气成分观测、研究与预报分会场论文集[C];2007年
9 孙红亮;;浅谈核燃料厂固定空气取样系统设[A];中国核学会核化工分会成立三十周年庆祝大会暨全国核化工学术交流年会会议论文集[C];2010年
相关博士学位论文 前6条
1 陈炳龙;基于转动拉曼散射和星载CALIOP数据的气溶胶高精度反演方法[D];北京理工大学;2015年
2 王耀庭;基于遥感与地面监测数据的城市气溶胶定量反演研究[D];南京师范大学;2006年
3 胡引翠;气溶胶多尺度定量遥感监测及其网格计算研究[D];中国科学院研究生院(遥感应用研究所);2006年
4 张子辉;云与气溶胶探测技术研究[D];中国科学院研究生院(长春光学精密机械与物理研究所);2015年
5 周碧;黄土高原半干旱区气溶胶辐射特性观测研究[D];兰州大学;2012年
6 唐家奎;基于MODIS数据气溶胶反演建模与网格计算中间件研究[D];中国科学院研究生院(遥感应用研究所);2005年
相关硕士学位论文 前10条
1 包青;基于激光雷达的南京仙林地区气溶胶遥感监测研究[D];南京师范大学;2015年
2 江彬彬;中国东部地区严重雾霾事件的多源卫星遥感动态观测及气象特征[D];浙江大学;2015年
3 陶然;成都地区气溶胶光学及理化特性研究[D];成都信息工程学院;2014年
4 许继爽;基于MODIS数据的城市地区AOD及PM2.5质量浓度反演[D];东北大学;2014年
5 张守忠;超临界法PM2.5气溶胶制备实验研究[D];青岛科技大学;2016年
6 刘芷君;东亚冬季风对气溶胶传输分布的影响研究[D];南京大学;2016年
7 谢江霞;中国大陆地区气溶胶卫星遥感产品验证研究[D];兰州大学;2008年
8 王沫威;长春市气溶胶光学特性的反演与分析[D];东北师范大学;2011年
9 刘琼;上海地区气溶胶对近地面臭氧的影响研究[D];东华大学;2012年
10 杨晓武;气溶胶的激光雷达探测和特性分析[D];南京信息工程大学;2009年
,本文编号:1354896
本文链接:https://www.wllwen.com/kejilunwen/huanjinggongchenglunwen/1354896.html