当前位置:主页 > 科技论文 > 环境工程论文 >

选矿废水中残留黄药的生化处理研究

发布时间:2018-01-02 08:20

  本文关键词:选矿废水中残留黄药的生化处理研究 出处:《昆明理工大学》2015年硕士论文 论文类型:学位论文


  更多相关文章: 黄药 共代谢 氮源 金属离子 填料 选矿药剂 EPS


【摘要】:随着矿业的发展,选矿带来的环境问题引起了人们的重视,选矿废水的处理成为环境污染控制工作中的重要部分。许多物理化学方法如混凝沉淀法、氧化法、药剂中合法等被广泛的应用,但许多方法的使用受到成本和技术的限制无法发挥其作用。本研究针对选矿废水中低浓度黄药和金属离子、以及起泡剂(皂化物、浮选油)、活化剂(硫化钠)、抑制剂(硫酸锌)等药剂共存的工程实际,采用摇床振荡培养法,驯化出对黄药有降解性能的菌群,研究了共代谢基质(多糖、二糖、单糖)、氮源成分结构(氯化铵、尿素、酵母膏、硝酸钠、亚硝酸钠)、碳氮比、金属离子(Fe3+、Zn2+、Pb2+)和共存药剂对菌群降解黄药的影响。同时利用甘蔗渣、生物可降解树脂聚丁二酸丁二醇酯(PBS)、活性炭和稻壳作为生物膜填料搭建生物膜反应器,研究不同填料组合的生物膜反应器对黄药生化降解的差异,探究生物膜胞外多聚物(Extracellular Polymeric Substances, EPS)含量和组成对黄药生化降解的影响,推导黄药生化降解的物质变化过程。上述研究结果表明:(1)黄药能在自然条件下发生降解,降解速度先慢后快,但总体降解速度较慢,降解率低;初始pH值越低,越有利于黄药的自然降解。在经驯化的黄药降解菌存在条件下,黄药的降解速度明显加快,降解率显著提高;黄药的降解速率与接种微生物的生长繁殖速率相吻合,表明驯化的微生物对黄药降解有重要作用。在初始pH值为6~10范围内,pH值越高,越有利于黄药降解菌对黄药的降解,但初始pH不同时,生化降解率差异不大,出水pH偏碱性。由于黄药降解产物及微生物的调节作用等原因,在黄药降解菌存在的条件下,随着降解的进行,溶液的pH向中性变化。共代谢基质可提高黄药的生化降解率,因其结构差异,促进作用依次是:淀粉蔗糖葡萄糖,多糖优于单糖,淀粉是最适宜的共代谢基质,促进效果最好。氯化铵和尿素作为氮源时,因含氮量较高,对黄药降解促进作用最强;酵母膏营养成分较多但含氮量较少,促进效果次之;硝酸钠和亚硝酸钠为黄药降解菌较难利用氮源.黄药降解效果最差。不同的碳氮比条件下黄药的降解率存在差异,较高的碳氮比有利于黄药的降解。(2) 0-20 mg/L的Fe3+有助于黄药的生物降解,且随浓度升高促进作用显著;Zn2+10 mg/L时可促进黄药的生物降解,高浓度(30-50 mg/L)有一定的抑制作用,4 mg/L的 Pb2+已经对黄药的生物降解表现出抑制作用,随着Pb2+浓度的升高(8~20 mg/L),抑制作用越明显。皂化物、浮选油以及高浓度的硫化钠、硫酸锌都会对微生物降解黄药产生不利影响,浓度越高,抑制作用越明显,但低浓度的硫化钠和硫酸锌对黄药的降解影响不显著。随着降解的进行,皂化物和硫酸锌浓度越高抑制作用越明显。而在降解的后期,浮选油和硫化钠的影响减弱。皂化物和浮选油单独存在时的影响比硫化钠显著,且随着药剂浓度的增加,黄药的降解率越低,但硫酸锌的影响强于浮选油。而药剂的复合影响因其存在相互作用,根据共存药剂的不同存在差异;除硫酸锌和皂化物的复合影响强于单独存在时的影响外,其余药剂的复合作用因为药剂之间的相互作用使得抑制作用削弱。在不同药剂存在的条件下,黄药生化降解过程中紫外扫描图谱存在差异。皂化物存在时二硫化碳积累量最多,而硫化钠存在时出现氢硫酸根吸收峰。(3)甘蔗渣、PBS、活性炭和稻壳作为生物膜反应器填料能使生物膜稳定的生长并发挥降解作用。和悬浮生长系统相比较,生物膜系统对黄药的生化降解速度显著提高;甘蔗渣能提供利用率较好的共代谢碳源并作为载体,较利于黄药降解菌的生长,生物量较大,EPS含量及PN/PS值较高,有利于生物膜反应器对黄药的降解。生物膜反应器填料理化性质的差异使得反应器中EPS含量、多糖蛋白质比例以及黄药生化降解过程中二硫化碳的量不一样,但降解过程物质种类没有差异;活性炭和甘蔗渣作为填料的反应器中EPS含量最高,蛋白质比例也较高,黄药的生化降解速度最快。
[Abstract]:With the development of mining, environmental problems caused by ore dressing attracted the attention of environmental pollution control work has become an important part of treatment of mineral processing wastewater. Many physical and chemical methods such as coagulation, oxidation, reagent method has been widely applied, but the use of many methods are limited by cost and technique to to play its role. Based on the mineral processing wastewater with low concentration of xanthate and metal ions, and foaming agent (saponification, flotation oil), activating agent (sodium sulfide), inhibitor (zinc sulfate). The coexistence of the engineering practice, by shaking culture method, the domestication of degradation of xanthate, bacteria, research the co metabolism substrate (two sugar, polysaccharide, monosaccharide), nitrogen source (ammonium chloride, urea composition, yeast extract, sodium nitrate, sodium nitrite), carbon nitrogen ratio, metal ions (Fe3+, Zn2+, Pb2+) and the coexistence of agents on bacteria degradation of xanthate. Ring. At the same time using bagasse, biodegradable resin polybutylene succinate (PBS), activated carbon and rice husk as biofilm carrier to build biofilm reactor, different biofilm reactor of different media combinations on xanthate biodegradation, explore the biofilm extracellular polymeric substances (Extracellular, Polymeric Substances, EPS) content and the effect of composition on xanthate biodegradation, material change process is xanthate degraded. The results of the study show that: (1) xanthate degradation occurs under natural conditions, the degradation speed of slow to fast, but the overall degradation rate is slow, the degradation rate is low; the lower initial pH value, the more conducive to the natural degradation of xanthate. In the presence of xanthate degrading bacteria domesticated conditions, the degradation rate of xanthate significantly accelerated the degradation rate increased significantly; the degradation rate and the growth rate of microbe propagation of xanthate is consistent, table The acclimated microorganism plays an important role in the degradation of xanthate. The initial pH value of 6 to 10 range, the higher the pH value, the more favorable to the degradation of xanthate xanthate degrading bacteria, but the initial pH is not at the same time, the biochemical degradation rate is insignificant, the effluent pH is alkaline. Because of xanthate degradation products and microbial regulation the role of reason, in the presence of xanthate degrading conditions, with the degradation, the pH of the solution to the neutral changes. Co metabolism substrate can improve the biodegradation rate of xanthate, because of the different structure, role are: starch and sucrose glucose, polysaccharides than single sugar, starch is the most suitable cometabolic substrates and the best promoting effect. Ammonium chloride and urea as the nitrogen source, because of high content of nitrogen, the xanthate degradation promotes the strongest; yeast extract nutrients but more nitrogen content is less, the promoting effect is secondary; sodium nitrate and sodium nitrite as xanthate degradation bacteria Difficult to use nitrogen source. The degradation of xanthate is the worst. The carbon nitrogen ratio of different degradation rate of xanthate between carbon and nitrogen higher than for xanthate degradation. (2) 0-20 mg/L Fe3+ biodegradation helps xanthate as the concentration increased, and the promoting effect of Zn2+10 mg/L can promote significantly; biological degradation of xanthate, high concentration (30-50 mg/L) had a certain inhibition, 4 mg/L Pb2+ has been on xanthate biodegradation showed inhibitory effect, with the increasing of Pb2+ concentration (8 ~ 20 mg/L), the greater the effect. Saponified oil and sodium sulfide flotation, high concentration of zinc sulfate will have an adverse effect on the microbial degradation of xanthate, the higher the concentration, the inhibition was more obvious, but the effect of degradation of sodium sulfide and zinc sulfate in low concentration of xanthate is not significant. With the degradation of unsaponifiable matter and zinc sulfate, the higher the concentration the more obvious inhibitory effect in degradation. Later, weaken the effect of flotation oil and sodium sulfide. Significant effect saponified and flotation oil exists alone than sodium sulfide, and with the concentration increasing, the degradation rate of xanthate is low, but the effect of zinc sulfate in flotation oil. While the composite effect of chemicals because of their interaction, according to the different differences the coexistence of agents; in addition to the impact of the composite effect of zinc sulfate and saponified stronger than when they are alone outside the compound effect of other chemicals because of the interaction between the agents in different chemical inhibition weakened. Under the conditions of existence, existence of UV spectra of xanthate biodegradation process in the presence of carbon disulfide. Differences in unsaponifiable matter accumulation most, and the presence of hydrogen sulfate sodium sulfide absorption peak at (3) PBS, bagasse, activated carbon and rice husk as biofilm reactor filler can make stable biofilm growth and play down Solution. And suspended growth system, biochemical degradation rate of xanthate biofilm system is significantly improved; the utilization rate of bagasse can provide good carbon sources and as a carrier, is conducive to the growth of xanthate degrading bacteria, large biomass, EPS content and higher PN/PS value, is conducive to the biofilm reactor xanthate degradation. Biofilm reactor filling between the physical and chemical properties of the EPS content in the reactor, carbon disulfide polysaccharide protein ratio and the amount of xanthate biodegradation process is not the same, but there is no difference between the types of material degradation; activated carbon and bagasse as the content of EPS in bioreactor is the highest, higher proportion of protein the biochemical degradation rate of xanthate, the fastest.

【学位授予单位】:昆明理工大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:X751

【参考文献】

相关期刊论文 前10条

1 徐劲;孙水裕;蔡河山;张萍;;Fenton试剂处理选矿废水的实验研究[J];环境科学与技术;2005年06期

2 姜峰,潘永亮,梁瑞,陈小光;含硫废水的处理与研究进展[J];兰州理工大学学报;2004年05期

3 姚传忠,张克强,季民,阎怀国,雷英春;排硫硫杆菌生物强化处理含硫废水[J];中国给水排水;2004年02期

4 宋小霞;朱静;张承屏;丁雪峰;;黄药的研制、应用和水污染处理研究进展[J];贵州化工;2012年03期

5 周茂钟;刘幽燕;李青云;卢清光;钟善锦;曹红军;;外加营养源对氯氰菊酯降解菌GF31降解特性的影响[J];化工环保;2009年05期

6 张维;季君晖;赵剑;王小威;许颖;杨冰;王萍丽;;生物质基聚丁二酸丁二醇酯(PBS)应用研究进展[J];化工新型材料;2010年07期

7 李娟;李浩然;孙春宝;;农业稻壳固定硫酸盐还原菌处理含镍废水[J];过程工程学报;2010年01期

8 李亚红;王琦;蔡伟民;;不同pH值条件下Fe~(3+)、Cu~(2+)和Zn~(2+)对厨余垃圾两相厌氧消化水解酸化过程的影响[J];环境工程学报;2007年10期

9 王灿;龚文琪;梅光军;许念;;羟肟酸类捕收剂2-羟基-3-萘甲羟肟酸的生物降解研究[J];环境污染与防治;2011年01期

10 葛勇德;硫化沉淀浮选处理电解钴镍废水的实验研究[J];环境与开发;1999年02期



本文编号:1368418

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/huanjinggongchenglunwen/1368418.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户007e2***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com