石家庄霾污染过程大气颗粒物化学组分分析及来源解析
本文关键词:石家庄霾污染过程大气颗粒物化学组分分析及来源解析 出处:《北京化工大学》2015年硕士论文 论文类型:学位论文
【摘要】:京津冀、长三角、珠三角、关中平原和成渝盆地,为我国大气颗粒物造成霾污染最为严重的典型区域,同时也是气态污染物高排放地区。石家庄霾污染监测研究及源解析,是京津冀区域大气污染联防联控的重要组成部分,但对石家庄大气颗粒物水溶性离子等化学成分分粒径段的分析研究鲜有报道,结合详细化学组成对该区域的大气颗粒物来源解析工作也刚刚开始。为认知石家庄典型霾污染过程中颗粒物化学组成特征和浓度水平,并进一步进行大气颗粒物源解析工作,于2013年6-8月、10-11月、2014年1月和4-5月,利用惯性撞击式9级采样器(Andersen).美国热电公司环境仪器和石英微量振荡天平(TEOM)对石家庄城区夏、秋、冬和春四个季节霾污染期间大气颗粒物进行了实时连续监测和分粒径段的采样分析。使用离子色谱仪、热光碳分析仪和电感耦合等离子体质谱仪(ICP-MS)对气溶胶中8种水溶性无机离子(Na+、NH4+、K+、Mg2+、Ca2+、Cl-、NO3-、 SO42-)、EC/OC以及24种金属元素进行了分析。并使用EPA PMF5.0模型对霾污染期间大气细颗粒物进行了来源解析,提出了石家庄大气污染优先控制的排放源。研究结果如下:石家庄采样期间颗粒物浓度有明显的季节变化特征。霾污染时期PM2.5平均浓度冬季最高,秋季次之,夏季最低。夏、秋、冬、春四个季节PM2.5平均浓度分别为:73.9±33.0、272.8±142.4、170.5±75.7、75.4±42.0μg/m3;NO2和SO2平均浓度的季节变化与颗粒物的季节变化致。SO:夏、秋、冬、春平均浓度分别:38.3±16.7.68.5±26.9.199,5±70.0、 37.1±15.3μg/m3;NO2夏、秋、冬、春平均浓度分别:42.5±18.0、87.4±20.5、113.8±31.4、44.2±19.0;03浓度的变化主要受温度、湿度、太阳紫外辐射强度等的影响,O3平均浓度夏季最高,冬季最低,春季高于秋季,夏、秋、冬、春每日8小时滑动平均最大值的均值分别为:169.5±50.0.36.8±20.1、 11.73±13.4.137.6±37.8μg/m3。大气颗粒物水溶性离子的浓度也有明显的季节变化,水溶性离子浓度冬季秋季夏季春季。霾污染的过程中水溶性离子浓度的增长主要是二次离子的增长在起主要作用。重霾天较高的相对湿度,促进了气溶胶中的液相反应,二次离子由凝结模态向液滴模态转移的迹象明显。OC和EC在轻霾天和重霾天有相同的季节分布特征,OC为冬季最高,春季最低,夏季高于秋季,EC为冬季春季秋季夏季。OC、EC均呈现典型的“双峰型”分布,但不同季节出现峰值的粒径段和峰高有所差异。重金属元素在大气颗粒物中的分布总体上呈现与大气颗粒物浓度季节变化一致解析出霾污染时期石家庄PM25来源为6类:扬尘(13.4%)、二次源(15.6%)、交通源(21.2%)、工业源(26.8%)、燃煤(11.0%)以及未解析出来部分(12.1%)。PM2.5中工业和交通的贡献最大共计48%,交通源主要为柴油机车的导致。因此石家庄市霾污染的控制,需要优先控制工业源的排放,加快对柴油机车进行改良和油品升级,同时要控制其他污染气体的排放以减少二次源的贡献,道路扬尘也同样不可忽视。
[Abstract]:Beijing Tianjin Hebei, Yangtze River Delta, Pearl River Delta, Guanzhong Plain and Chengdu basin, for atmospheric particles caused by China's most typical areas for serious haze pollution, but also the high emissions of gaseous pollutants in Shijiazhuang haze pollution monitoring research and source analysis, is an important part of the Beijing Tianjin Hebei regional joint prevention and control of air pollution, little research analysis but the report of atmospheric particulates in Shijiazhuang chemical constituents from the water soluble ion size section, combined with chemical composition has just started on the source of atmospheric particulate matter analytical work in the region. The chemical particles of typical Shijiazhuang haze pollution process in cognitive composition characteristics and the concentration level, and further work for source apportionment of atmospheric particulates in 2013, 6-8 months, 10-11 months and 4-5 months in January 2014, the use of inertial impaction type 9 stage sampler (Andersen). The United States ThermoElectron Corporation environmental instruments and quartz micro oscillating microbalance (TE OM) of Shijiazhuang city in summer, autumn, winter and spring during the four season haze particulate air pollution was sampled and analyzed real-time continuous monitoring and size. Using ion chromatography, optical carbon analyzer and inductively coupled plasma mass spectrometry (ICP-MS) of 8 kinds of water soluble inorganic ions in aerosol (Na+ NH4+, K+, Mg2+, Ca2+, Cl-, NO3-, SO42-, EC/OC) and 24 kinds of metal elements were analyzed. And the haze pollution during atmospheric fine particles of source analysis using EPA PMF5.0 model, proposed the Shijiazhuang air pollution control priority emissions. The results are as follows: Shijiazhuang during the sampling period of particle concentration there are distinct seasonal variations. The average concentration of PM2.5 during the period of haze pollution is highest in winter and lowest in summer. In autumn, summer, autumn, winter, spring four season the average concentration of PM2.5 was 73.9 + 33.0272.8 + 142.4170.5 + 75.7,75.4 + 42 g/ M3; seasonal variation of seasonal changes of NO2 and SO2 average concentration and particle induced.SO: summer, autumn, winter and spring, the average concentration respectively: 38.3 + 16.7.68.5 + 26.9.199,5 + 70, 37.1 + 15.3 g/m3 NO2; summer, autumn, winter and spring, the average concentration respectively: 42.5 + 18.0,87.4 + 20.5113.8 + 31.4,44.2 + 19; 03 concentration change is mainly affected by temperature, humidity, solar radiation intensity, the average O3 concentration was highest in summer and lowest in winter, in spring than that in autumn, summer, autumn, winter and spring, mean daily maximum 8 hours moving average respectively: 169.5 + 50.0.36.8 + 20.1, 11.73 + 13.4.137.6 + concentration atmospheric particles of 37.8 g/m3. water soluble ions have obvious seasonal changes, water soluble ion concentration in winter and summer. Autumn spring haze pollution process of water soluble ion concentration increase is mainly the two increase in ion archfunction. Heavy haze days high relative humidity Is promoted in aerosol liquid phase reaction, two ion transfer from condensation mode to the droplet mode of.OC and EC in the obvious signs of light haze days and heavy haze days have the same seasonal distribution characteristics, OC is the highest in winter and lowest in spring and summer than that in autumn winter spring summer autumn season for EC.OC. EC showed the typical "Shuangfeng type" distribution in different seasons, but the peak particle size and peak height difference. Heavy metals present in the overall distribution of atmospheric particles and the concentration of atmospheric particulate consistent seasonal variation analysis of haze pollution in Shijiazhuang during the period of PM25 into 6 categories: dust (13.4%), two the secondary source (15.6%), traffic source (21.2%), industrial sources (26.8%), coal (11%) and not on part (12.1%) with.PM2.5 in the biggest industry and the transportation totaled 48%, traffic is the main source in diesel locomotive. Because of the control of haze pollution in Shijiazhuang City, to We should give priority to control the discharge of industrial sources, accelerate the upgrading of diesel locomotives and upgrade oil products, and control the emissions of other polluting gases to reduce the contribution of the two sources. Road dust can not be ignored either.
【学位授予单位】:北京化工大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:X513
【参考文献】
相关期刊论文 前10条
1 史军;吴蔚;;上海霾气候数据序列重建及其时空特征[J];长江流域资源与环境;2010年09期
2 吴兑;霾与雾的区别和灰霾天气预警建议[J];广东气象;2004年04期
3 昌艳萍;耿超;李春蕾;武瑞兰;薛柳青;;大气中PM_(2.5)的现状分析及新的思考[J];环境科学与技术;2012年S1期
4 朱先磊,张远航,曾立民,王玮;北京市大气细颗粒物PM_(2.5)的来源研究[J];环境科学研究;2005年05期
5 叶文波;;宁波市大气可吸入颗粒物PM_(10)和PM_(2.5)的源解析研究[J];环境污染与防治;2011年09期
6 陶俊;陈刚才;钟昌琴;;重庆市大气TSP中水溶性无机离子的化学特征[J];中国环境监测;2006年06期
7 李杏茹;宋爱利;王英锋;孙颖;刘子锐;王跃思;;兴隆大气气溶胶中水溶性无机离子分析[J];环境科学;2013年01期
8 张小曳;孙俊英;王亚强;李卫军;张蔷;王炜罡;权建农;曹国良;王继志;杨元琴;张养梅;;我国雾-霾成因及其治理的思考[J];科学通报;2013年13期
9 康苏花;李海峰;杨丽杰;赵鑫;常青;高康宁;李亚卿;靳伟;;石家庄市大气颗粒物碳组分特征分析[J];科学技术与工程;2014年30期
10 游燕;白志鹏;;大气颗粒物暴露与健康效应研究进展[J];生态毒理学报;2012年02期
相关硕士学位论文 前1条
1 许明君;南京大气颗粒物中水溶性离子与重金属元素的理化特性研究[D];南京信息工程大学;2012年
,本文编号:1375629
本文链接:https://www.wllwen.com/kejilunwen/huanjinggongchenglunwen/1375629.html