基于WASP模型的松花江哈尔滨段水环境容量模拟及总量控制研究
本文关键词:基于WASP模型的松花江哈尔滨段水环境容量模拟及总量控制研究 出处:《哈尔滨师范大学》2015年硕士论文 论文类型:学位论文
更多相关文章: WASP 水环境容量 点源污染 非点源污染 总量控制
【摘要】:松花江哈尔滨段是松花江中游最重要的水域,流域水质的优劣直接影响到松花江中下游的水环境状况。由于松花江哈尔滨段流经哈尔滨市区,大量工业、农业、居民生活废水进入水体,水体中污染物超出水体环境容量,造成水质下降。因此,研究松花江哈尔滨段水环境容量,建立松花江哈尔滨段水环境总量控制体系是治理松花江水环境污染的根本性措施。本文依据松花江哈尔滨段的水文、气候、地形、植被等环境要素特点,结合流域国控监测断面水质数据、野外采样点水质数据,选用WASP7.3版本水质分析模型,建立松花江哈尔滨段水质模型。分析研究区污染物的产生特点和排放特点,将研究区污染类型分为点污染源和非点污染源,利用调查分析污染源产生的方法计算流域内非点源污染负荷,利用2013年哈尔滨市环境统计数据计算流域内点源污染负荷。将污染负荷输入到WASP水质模型中,研究2013年污染物COD、NH3-N在松花江哈尔滨段时空变化规律,计算研究区各河段污染物COD、NH3-N的水环境容量,并计算各河段的COD、NH3-N实际削减量,从而实现流域水体中污染物的总量控制。研究结果表明,松花江哈尔滨段污水排放量COD 211009.26t/a、NH3-N30644.54t/a。从污染总量上看,研究区污染物COD、NH3-N的非点源污染负荷排放量占总排放量的81.11%、87.97%。从污染源排放量上看,畜禽养殖、农田、城市生活污水三类污染物的排放比例最大,污染物COD、NH3-N的排放量分别占总排放量的89.42%和91.65%。松花江哈尔滨段2013年污染物COD的水环境容量为442559.2t/a、NH3-N为39458.5t/a。从水环境容量空间分布上看,朱顺屯-阿什河口下(河段1)、阿什河口下-呼兰河口下(河段2)、呼兰河口下-大顶子山(河段3)3个河段的COD、NH3-N水环境容量较大,阿城镇前-阿什河口内(河段4)、呼兰河入呼兰境-呼兰河口内(河段5)的水环境容量较小。从水环境容量时间分布上看,研究区水环境容量遵循了丰水期平水期枯水期的一般规律。在不同的水文期中,水环境容量的大小差异明显。朱顺屯-阿什河口下(河段1)河段在平水期、枯水期的COD排污量超过水环境容量,应削减6090.64t、2597.92t;阿城镇前-阿什河口内(河段4)全年排污量均超过水环境容量,应全年削减COD33400.03t、NH3-N 11260.27t;呼兰河入呼兰境-呼兰河口内(河段5)全年排污量均超过水环境容量,应全年削减COD 82926.73t、NH3-N 11395.68t。在进行松花江哈尔滨段水环境总量控制过程中,以水环境容量作为下一年的容量标准值,由此制定污染物COD、NH3-N的削减计划,可以准确掌握水环境变化趋势,并有效的管理、控制、防治流域水环境污染。
[Abstract]:Harbin section of Songhua River is the most important water area in the middle reaches of Songhua River. The water quality of the basin directly affects the water environment of the middle and lower reaches of Songhua River. The pollutants in the water body exceed the environmental capacity of the water body, resulting in the decline of the water quality. Therefore, the water environmental capacity of Harbin section of Songhua River is studied. The establishment of total water environment control system in Harbin section of Songhua River is a fundamental measure to control the water environment pollution of Songhua River. This paper is based on the characteristics of hydrology, climate, topography, vegetation and other environmental factors in Harbin section of Songhua River. Combined with the water quality data of the state-controlled monitoring section and the field sampling points, the WASP7.3 version of the water quality analysis model was selected. The water quality model of Harbin section of Songhua River was established. The characteristics of pollutant generation and discharge were analyzed, and the pollution types in the study area were divided into point pollution source and non-point pollution source. The non-point source pollution load in the basin is calculated by the method of investigation and analysis of pollution sources. The point source pollution load in the watershed was calculated by using the environmental statistics data of Harbin on 2013. The pollution load was input into the WASP water quality model and the pollutant COD in 2013 was studied. The temporal and spatial variation of NH3-N in Harbin reach of Songhua River was studied. The water environmental capacity of COD _ (NH _ 3-N) was calculated and the actual reduction of COD _ (+) NH _ (3-N) was calculated. The results show that the discharge of wastewater from Songhua River Harbin reaches 21 1009.26 t / a. NH _ 3-N 30644.54 t / a. In terms of the total amount of pollution, the non-point source pollution load discharge of COD _ (3) -N in the study area accounts for 81.11% of the total emissions. 87.97. from the source of pollution emissions, livestock and poultry farming, farmland, urban domestic sewage discharge ratio of three types of pollutants is the largest, pollutants COD. In 2013, the water environmental capacity of COD in Harbin section of Songhua River was 442559.2 t / a. The NH3-N is 39458.5 t / a. From the spatial distribution of water environmental capacity, it is found that the Zhushuntun Ashe estuary (1 ~ 1), the Ashi Estuary and the Hulan River Estuary (reach 2). The water environment capacity of COD _ (NH _ 3-N) in 3 reaches of Hulan River Estuary to Dadingzi Mountain (reach 3) is larger than that of Acheng Qian-Ashi Estuary (reach 4). The water environment capacity of the Hulan River entering the Hulan Estuary (reach 5) is relatively small. From the point of view of the time distribution of the water environmental capacity. The water environmental capacity of the study area follows the general law of the dry season in the high water season. In different hydrological periods, the size of the water environmental capacity varies obviously. The lower reaches of the Zhushuntun-Ashi Estuary (reach 1) are in the flat water period. The amount of COD sewage in dry season exceeds the capacity of water environment and should be reduced by 6090.64t / 2597.92t; The amount of sewage discharged in the year from Qianqian to Ashe Estuary (reach 4) exceeds the capacity of water environment, so the NH3-N of COD 33400.03tn11260.27t should be reduced in the whole year. The discharge amount of Hulan River into Hulan River Estuary (reach 5) exceeded the capacity of water environment in the whole year and COD should be reduced by 82926.73t in the whole year. NH3-N 11395.68 t. in the process of total water environment control in Harbin section of Songhua River, the capacity of water environment is taken as the standard value of capacity in the next year, and the pollutant COD is established. The reduction plan of NH3-N can accurately grasp the trend of water environment change, and effectively manage, control and prevent the water environment pollution.
【学位授予单位】:哈尔滨师范大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:X26;X522
【相似文献】
相关期刊论文 前10条
1 张永祥;王磊;姚伟涛;张丽云;;WASP模型参数率定与敏感性分析[J];水资源与水工程学报;2009年05期
2 郭旭;解岳;;应用WASP模型模拟曲江池水质[J];供水技术;2011年03期
3 唐大元;;WASP水质模型国内外应用研究进展[J];安徽农业科学;2011年34期
4 廖振良,林卫青,徐祖信;WASP-5系统及其述评[J];上海环境科学;2001年01期
5 杨家宽,肖波,刘年丰,李进军,何归丽;WASP6预测南水北调后襄樊段的水质[J];中国给水排水;2005年09期
6 王文杰;安莉娜;;基于WASP5氮原理的二维水量水质耦合模型及应用[J];长江科学院院报;2011年01期
7 陈美丹;姚琪;徐爱兰;;WASP水质模型及其研究进展[J];水利科技与经济;2006年07期
8 孙文章;曹升乐;徐光杰;;应用WASP对东昌湖水质进行模拟研究[J];山东大学学报(工学版);2008年02期
9 李广梁;滕洪辉;;WASP水质模型功能及应用[J];广州化工;2014年12期
10 项爱枝;鲁昭;;WASP模型应用于城市区域河网水质模拟研究[J];北方环境;2011年04期
相关会议论文 前2条
1 Hao Lifen;Cheng Lianbiao;Bi Xingwen;;Apply with WASP Water Quality Model[A];2012年计算机应用与系统建模国际会议论文集[C];2012年
2 邹振宇;陈博;王文莉;;基于WAsP软件的风电场机组选型[A];山东电机工程学会第五届供电专业学术交流会论文集[C];2008年
相关重要报纸文章 前5条
1 王硕军;WASP做法对抗儿童耳痛[N];医药经济报;2007年
2 记者 徐玢 管晶晶;中外科学家首次揭示行星瓦解和死亡进程[N];科技日报;2010年
3 记者 吴晶晶;行星之死,天文学家首次见证惊心动魄进程[N];新华每日电讯;2010年
4 记者 张梦然;宇宙中迄今最炽热行星确认[N];科技日报;2011年
5 记者 许琦敏;一颗行星正被恒星“吸食”[N];文汇报;2010年
相关博士学位论文 前2条
1 彭森;基于WASP模型的不确定性水质模型研究[D];天津大学;2010年
2 张质明;基于不确定性分析的WASP水质模型研究[D];首都师范大学;2013年
相关硕士学位论文 前8条
1 王茜;基于WAsP模式的风电场资源评估应用分析[D];浙江工业大学;2012年
2 程一曼;基于WASP7的渭河陕西段水质模拟分析研究[D];西北大学;2008年
3 胡f^;基于WASP模型的湘江湘潭段水质目标管理研究[D];湘潭大学;2013年
4 孙豪文;基于WASP模型的湘江中下游水质模拟研究[D];长沙理工大学;2013年
5 金梦;基于WASP水质模型的水环境容量计算[D];辽宁大学;2011年
6 徐安娜;WASP模型及其在水库水质模拟研究中的应用[D];华北电力大学;2014年
7 张玲霞;鄱阳湖区富营养化时空分布特征分析及WASP模型水质预测[D];南昌大学;2015年
8 王思文;基于WASP模型的松花江哈尔滨段水环境容量模拟及总量控制研究[D];哈尔滨师范大学;2015年
,本文编号:1387340
本文链接:https://www.wllwen.com/kejilunwen/huanjinggongchenglunwen/1387340.html