畜禽养殖废水中重金属对厌氧微生物多样性影响研究
本文关键词:畜禽养殖废水中重金属对厌氧微生物多样性影响研究 出处:《湖南农业大学》2015年硕士论文 论文类型:学位论文
更多相关文章: 畜禽养殖废水 重金属 厌氧生物处理 多样性 Cu~(2+) Zn~(2+)
【摘要】:本论文通过对畜禽废水中添加Cu~(2+)、Zn~(2+)下对其厌氧处理系统运转、细菌多样性进行分析,为处理含重金属畜禽养殖废水提供参考,通过试验得出:(1)在无添加重金属时,对厌氧系统处理畜禽养殖废水条件选择与优化。最终得出最佳运行条件为:进水TOC为1000mg/L、pH为7.5(试验得出为7-8)。(2)在添加Cu~(2+)的条件下,随着Cu~(2+)浓度由1.2605mg/L增加至4.7224mg/L,去除率从99.49%降低至42.20%;TOC去除率由85.48%降低至13.89%;产甲烷量从155.30mL降至67.78mL;试验3组(C_(Cu)=2.23mg/L)的抑制率达到49.77%,故2.23mg/L为半抑制浓度。(3)在添加Zn~(2+)的条件下,随着Zn~(2+)浓度由3.0699mg/L增加至29.8278mg/L,Zn~(2+)的吸附量逐步增大但去除率有所降低;TOC去除率由81.29%降低至27.48%,产甲烷量从343.85mL降至83.67mL;试验4组(C_(Zn)=13.64mg/L)的抑制率达到49.59%,故13.64mg/L为半抑制浓度。(4)在添加Cu~(2+)-Zn~(2+)的条件下,随着Cu~(2+)、Zn~(2+)的浓度增加,厌氧活性污泥中的Cu、Zn的含量也趋于饱和,最后趋于饱和不再随Cu~(2+)、Zn~(2+)浓度升高而增加;TOC去除率由75.27%降低至18.76%;产甲烷量从228.91mL降至118.93mL;试验15组(C_(Cu)=1.24mg/L, C_(Zn)=17.14mg/L)、试验24组(C_(Cu)=1.63mg/L, C_(Zn)=13.65mg/L)、试验33组(C_(Cu)=1.67mg/L, C_(Zn)=8.65mg/L)、验43组(C_(Cu)=2.30mg/L, C_(Zn)=8.37mg/L)和试验51组(C_(Cu)=3.78mg/L, C_(Zn)=3.10mg/L)的抑制率达到50%左右,故其为半抑制浓度。(5)通过PCR-DGGE技术和高通量测序之后,厌氧微生物所属的门、纲、目、科、属发生了较大变化。随着Cu~(2+)-Z n~(2+)浓度的增加,发现厌氧颗粒污泥中的细菌种群丰富度明显降低,在DGGE中除试验11组(C_(Cu)=1.32mg/L, C_(Zn)=3.07mg/L)亮条纹有少许增多,其余试验组中亮条纹明显减少;说明低浓度Cu~(2+)-Zn~(2+)对厌氧微生物产生了促进作用作用,高浓度Cu~(2+) Zn~(2+)对厌氧微生物产生了抑制作用。通过对对照组、试验11组(C_(Cu)=1.32mg/L, C_(Zn)=3.07mg/L)、试验15组(C_(Cu)=1.24mg/L, C_(Zn)=17.14mg/L)、试验51组(C_(Cu)=3.78mg/L, C_(Zn)=3.10mg/L)和试验55组(C_(Cu)=3.77mg/L, C_(Zn)=17.34mg/L)的微生物门分布图对比,低浓度Cu~(2+)-Zn~(2+)对部分微生物有促进作用,如Fimicute,而部分微生物则会受到抑制作用,如Chloroflexi。通过对样本ACE稀疏指数、样本距离热图对比,PCA分析plot等分析,表明对照组与试验15组(C_(Cu)=1.24mg/L,C_(Zn)=17.14mg/L)相似程度较高,试验51组(C_(Cu)=3.78mg/L, C_(Zn)=3.10mg/L)与试验55组(Ccu=3.77mg/L, C_(Zn)=17.34mg/L)相似度较高。
[Abstract]:In this paper, the anaerobic treatment system and bacterial diversity of livestock and poultry wastewater were analyzed under the condition of adding Cu~(2 to the wastewater, which provided a reference for the treatment of livestock and poultry wastewater containing heavy metals. The optimum conditions of anaerobic system for livestock and poultry wastewater treatment were obtained by experiments. The optimal operating conditions were as follows: the influent TOC was 1000mg / L. The pH value was 7.5 (7-8%) under the condition of adding Cu~(2. With the increase of Cu~(2 concentration from 1.2605 mg / L to 4.7224 mg / L, the removal rate decreased from 99.49% to 42.20 mg / L; The removal rate of TOC was reduced from 85.48% to 13.89; Methane production decreased from 155.30 mL to 67.78 mL; The inhibition rate of 2.23mg / L) in experimental group 3 was 49.77, so 2.23 mg / L was semi-inhibitory concentration. 3) under the condition of adding Zn~(2). With the increase of Zn~(2 concentration from 3.0699mg / L to 29.8278mg / L, the adsorption capacity increased gradually but the removal rate decreased. The removal rate of TOC was reduced from 81.29% to 27.48 ml, and the methane production decreased from 343.85 mL to 83.67 mL. In experiment 4, the inhibition rate of CZP 13.64mg / L was 49.59%. Therefore, 13.64mg / L was semi-inhibitory concentration. 4) under the condition of adding Cu~(2 (-ZnO2), the concentration of Cu~(2 increased with the increase of the concentration of Cu~(2. The content of Cu ~ (2 +) Zn in anaerobic activated sludge also tended to be saturated, and finally, the content of Cu ~ (2 +) in anaerobic activated sludge was not increased with the increase of Cu~(2 ~ (2 +) concentration. The removal rate of TOC was decreased from 75.27% to 18.76; Methane production decreased from 228.91 mL to 118.93 mL; In experiment 15 groups, there were 1.24 mg / L, and in experiment 24 groups, there were 1.24 mg / L, 17.14 mg / L, respectively, and in 24 groups of experiment, there were 1.63 mg / L. C / C / C / L 13.65 mg / L, test 33 groups / s / L / L / L / L / L / L / L / L / L / L / L / L / L / L / C / L of 8.65 mg / L / L). A total of 43 groups (2.30mg / L) and 51 test groups (2.30mg / L, 8.37mg / L) and 51 groups were tested respectively (3.78mg / L). The inhibition rate of C ~ + ~ (10) mg 路L ~ (-1) was about 50%, so it was half inhibitory concentration. (5) after PCR-DGGE and high-throughput sequencing. The phylum, class, order, family, genus of anaerobic microbes have changed greatly with the increase of Cu~(2 concentration. It was found that the abundance of bacteria in anaerobic granular sludge was obviously decreased, and in DGGE, except for 11 groups, 1.32 mg / L. There was a little increase in the number of bright stripes in C\ +\ +\ {0\} 7 mg / L\%\%\%\%\%\%\%\%\%\%\%\%\. The results show that the low concentration of Cu~(2 _ (2) can promote the anaerobic microorganism. High concentration of Cu~(2) Zn~(2 inhibited anaerobic microorganism. In the control group, the control group was treated with 1. 32 mg / L. Che Zn-nu 3.07 mg / L, test 15 groups, Che / C, 1.24 mg / L / L, C / L / L / L, C / T / C / L (17.14 mg / L / L). Test 51 groups have 3.78 mg / L, and test 55 groups have 3.77 mg / L of C\ + +\%\%\\\ {\}. Compared with the microbial gate distribution of Che ZZN 17.34 mg / L), low concentration of Cu~(2 ~ (-ZnN ~ (2)) could promote some microbes, such as Fimicute. However, some microbes were inhibited, such as chloroflexi. the ACE sparsity index of samples and the comparison of sample distance heat map with plot analysis were carried out. The results showed that the similarity between the control group and the experimental 15 groups was higher than that in the control group (1.24 mg / L) and the control group (17.14 mg / L). Ccun 3.78 mg / L and Ccun 3.77 mg / L in trial 51 group and Ccun 3.77 mg / L in test 55 group. Che ZZN 17.34 mg / L) has a higher similarity.
【学位授予单位】:湖南农业大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:X713
【参考文献】
相关期刊论文 前10条
1 陈峻峰;颜智勇;邵继海;舒鹏;王杰;文树龙;;金霉素对畜禽养殖废水厌氧生物处理及细菌多样性的影响[J];净水技术;2014年02期
2 陈琳;谷洁;高华;秦清军;王小娟;陈智学;;Cu对厌氧发酵中水解酶活性及沼气产量的影响[J];农业工程学报;2012年09期
3 王兴春;杨致荣;王敏;李玮;李生才;;高通量测序技术及其应用[J];中国生物工程杂志;2012年01期
4 于聘飞;王英;葛芹玉;;高通量DNA测序技术及其应用进展[J];南京晓庄学院学报;2010年03期
5 陈皓;陈玲;黄爱群;王虹;;重金属对2-氯酚厌氧降解的抑制动力学研究[J];中国环境科学;2010年03期
6 高艳娇;赵树立;刘元;;金属离子对厌氧消化的影响[J];辽宁化工;2010年03期
7 方春玉;周健;杨晓芳;李涛;何旭峰;;AFB的活性污泥中发酵细菌的分离及其初步鉴定[J];环境工程学报;2008年12期
8 滕晓坤;肖华胜;;基因芯片与高通量DNA测序技术前景分析[J];中国科学(C辑:生命科学);2008年10期
9 段妮娜;董滨;何群彪;陈洪斌;;规模化养猪废水处理模式现状和发展趋势[J];净水技术;2008年04期
10 吴高锋;李文刚;高卫科;魏娟;杨慧敏;王鑫;;PCR-DGGE的原理及在动物肠道菌群分析中的应用[J];中国畜牧兽医;2008年06期
,本文编号:1414349
本文链接:https://www.wllwen.com/kejilunwen/huanjinggongchenglunwen/1414349.html