粒化高炉矿渣和氧化镁固化稳定化铅污染粘土的强度、溶出及微观特性的研究
本文关键词: 铅污染 GGBS-MgO 稳定/固化 物理化学性 强度特性 环境安全性 微观机理 出处:《东南大学》2015年硕士论文 论文类型:学位论文
【摘要】:粒化高炉矿渣粉(GGBS)作为一种绿色低碳可持续发展材料,被广泛作为水泥基材料添加料。活性氧化镁(MgO)可以有效激发GGBS,提高激发后GGBS的无侧限抗压强度。但目前对GGBS-MgO作为重金属污染粘土固化剂研究存在不足,本文以国家863计划课题(2013AA06A206)、国家自然科学基金重点项目(41330641)、国家自然科学基金项目(51278100,41472258)和江苏省自然科学基金杰出青年基金项目(BK2012022)为依托,采用GGBS-MgO作为固化剂加固铅污染粘土,并通过酸缓冲能力测试、无侧限抗压强度试验、毒性浸出试验及半动态浸出试验,对GGBS-MgO固化铅污染土进行物理化学特性、强度特性、环境安全性及微观机理的分析研究,并对GGBS-MgO和水泥固化现场铅锌镉复合污染土进行对比研究。得到的主要研究结论如下:(1)物理化学特性:标准养护及半动态浸出条件下,GGBS-MgO固化铅污染土pH均低于固化未污染土,半动态浸出试验后,同一配比试样内部pH在淋滤液初始pH=2.0-7.0时相差不大,而试样表层pH在淋滤液初始pH=2.0时约为pH=3.0-7.0时的1/2; GGBS-MgO固化铅污染土相比于水泥固化铅污染土有较强的酸缓冲能力。(2)强度特性:GGBS-MgO固化铅污染土针刺深度约为固化未污染土的1.4-3.2倍,且无侧限抗压强度qu均较固化未污染土小;随着固化剂掺量增加,试样针刺深度逐渐减小,强度随之升高;半动态浸出试验后,试样随着淋滤液初始pH增大,试样针刺深度逐渐减小,qu增加,试样qu较标准养护39 d试样qu降低了2%-53%;在同等条件下GGBS-MgO固化未污染土半动态浸出后qu较水泥固化未污染土qu提高了12%-43%,且在18%掺量下约为水泥固化铅污染土1.3-1.8倍。(3)环境安全性:TCLP试验表明随着固化剂掺量的增加,铅溶出率明显下降;半动态浸出试验表明同等掺量、同等试验条件下,淋滤液初始pH=7.0时,GGBS-MgO固化土扩散系数相比于水泥固化土低1-2个数量级;通过三种方法计算扩散系数,初始淋滤液pH=2.0时铅的溶出机制为溶解,随着pH增加溶出机制由溶解转为扩散。(4)微观机理:X射线衍射结果表明GGBS-MgO固化铅污染土有明显水合硅酸镁和Ht生成,铅的固定形式主要为表面吸附与沉淀;扫描电镜结果表明,GGBS-MgO固化土试样标准养护28 d时主要水化产物为C-S-H与Ht,铅污染的掺入使C-S-H与Ht在形态上有所改变;压汞试验结果表明,随着龄期增加,试样累积孔隙减少:固化剂掺量增加会使试样内部孔隙更加致密,铅污染的掺入使得试样孔隙增加:半动态浸出结束后,试样孔径相比于同龄期试样增大,GGBS-MgO固化士孔隙比水泥固化土更为致密。通过上述试验研究表明,GGBS-MgO作为固化剂固化铅污染粘土在强度特性、环境安全性上都优于水泥,可将其作为固化剂代替水泥固化铅污染粘土。
[Abstract]:Granulated blast furnace slag powder (GGBS) is a green and low carbon material for sustainable development. Active magnesium oxide (MgO) can effectively excite GGBs and improve the unconfined compressive strength of activated GGBS. However, the study of GGBS-MgO as a curing agent for heavy metal contaminated clay is insufficient. In this paper, based on the National 863 Program project (2013AA06A206), the National Natural Science Foundation's key project (41330641U), the National Natural Science Foundation's project No. 51278100 (41472258) and the outstanding youth fund of Jiangsu Provincial Natural Science Foundation (BK2012022), GGBS-MgO is used as the curing agent to strengthen lead-contaminated clay. Through acid buffer capacity test, unconfined compressive strength test, toxic leaching test and semi-dynamic leaching test, the physical and chemical properties, strength characteristics, environmental safety and microscopic mechanism of GGBS-MgO solidified lead-contaminated soil were analyzed and studied. The main conclusions are as follows: the physical and chemical properties of Pb-Zn / CD composite contaminated soil cured by GGBS-MgO and cement curing site are as follows: the pH of GGBS-MgO solidified lead-contaminated soil is lower than that of solidified uncontaminated soil under standard curing and semi-dynamic leaching conditions. After semi-dynamic leaching test, the internal pH of the same ratio sample had little difference at the initial pH=2.0-7.0 of the leachate. The pH value of the surface layer of the sample was about 1 / 2 of that of pH=3.0-7.0 at the initial pH=2.0 of leaching solution, and the strength of the lead-contaminated soil cured by GGBS-MgO was 1.4-3.2 times of that of the uncontaminated soil, compared with that of the lead-contaminated soil solidified by cement. The strength characteristics of the lead-contaminated soil solidified with GGBS-MgO were 1.4-3.2 times as deep as that of the uncontaminated soil cured by GGBS-MgO. The unconfined compressive strength qu is smaller than that of the uncontaminated soil, the depth of needling decreases gradually and the strength increases with the increase of the content of curing agent, after semi-dynamic leaching, the sample increases with the initial pH of leaching solution. The needling depth of the sample gradually decreased and increased. After semi-dynamic leaching of uncontaminated soil cured by GGBS-MgO under the same conditions, it increased 12-43x than that of uncontaminated soil cured by cement, and was about 1.3-1.8 times as much as that of cement-cured lead-contaminated soil at 18%). The environmental safety: TCLP test showed that with the increase of the amount of curing agent, The semi-dynamic leaching test showed that the diffusion coefficient of GGBS-MgO solidified soil was 1-2 orders of magnitude lower than that of cement solidified soil at the initial pH=7.0 of leaching filtrate under the same amount of content, and the diffusion coefficient was calculated by three methods. The dissolution mechanism of lead in the initial leaching filtrate pH=2.0 was dissolution. With the increase of pH, the dissolution mechanism changed from dissolution to diffusion. The microcosmic X-ray diffraction results showed that GGBS-MgO solidified lead contaminated soil had obvious hydrated magnesium silicate and Ht formation. The results of SEM showed that the main hydration products of GGBS-MgO solidified soil for 28 days were C-S-H and Ht.The incorporation of lead pollution changed the morphology of C-S-H and Ht. With the increase of age, the cumulative porosity of the sample decreases: the increase of the amount of curing agent will make the internal pore of the sample more compact, and the incorporation of lead pollution will increase the pore of the sample: after the semi-dynamic leaching, The pore size of GGBS-MgO solidified clay is denser than that of cement solidified soil. The experimental results show that GGBS-MgO solidified lead-contaminated clay is superior to cement in terms of strength and environmental safety. It can be used as curing agent instead of cement curing lead contaminated clay.
【学位授予单位】:东南大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:X53;TU43
【相似文献】
相关期刊论文 前10条
1 马衍富;试论高强度厚带和绳索的强度试验[J];纺织特品技术;1984年03期
2 康启来;;电子压缩强度试验仪的使用和检测体会[J];印刷世界;2009年03期
3 ;碳素刮片动态强度试验[J];电碳技术;1975年04期
4 ;大口径的90°弯头强度试验研究[J];华东石油学院学报;1977年02期
5 ;焊接薄壁三通的强度试验 四、分析[J];油田设计;1972年03期
6 郝克耕;韩春雷;邱平;;直拔法检测混凝土强度试验研究[J];建筑科学;2012年03期
7 郝俊芳;; 油田管类复合外载强度试验装置[J];石油矿场机械;1981年03期
8 彭担任;彭超;;矿用风筒材料撕力强度试验技术[J];试验技术与试验机;2003年04期
9 杜跃武, 曾宪煊,孙永振,,肖恩与,孙国堂;磁化水拌制砼试验研究[J];焦作矿业学院学报;1995年03期
10 曾月秀;;运用质量专业理论 判断水泥产品富裕强度合格率[J];中国水泥;2006年05期
相关会议论文 前5条
1 郭玉涛;吴佩刚;赵光仪;;二轴应力下高强混凝土的强度[A];高强混凝土及其应用第二届学术讨论会论文集[C];1995年
2 畅雄勃;;后置双柱防翻架强度试验分析及设计要点[A];农业机械化与全面建设小康社会——中国农业机械学会成立40周年庆典暨2003年学术年会论文集[C];2003年
3 谈云志;喻波;郑爱;付伟;张华;万智;;石灰稳定红黏土强度的长期碳化效应[A];《岩土力学》vol.34 增刊1 2013[C];2013年
4 周孝正;蔡正咏;;射钉法检测混凝土强度试验研究[A];混凝土工程质量控制适用技术交流会论文汇编[C];1991年
5 任铁钺;魏莹;;利用均匀设计方法对多元胶凝体系强度的研究[A];全国高性能混凝土和矿物掺合料的研究与工程应用技术交流会论文集[C];2006年
相关重要报纸文章 前3条
1 王立群;C919首件大部段开始强度试验[N];中国航空报;2011年
2 范有禄 尚忠弟;中国飞机强度试验的尖兵[N];中国航空报;2003年
3 刘红斌 关祥武 王冬;当好质量“守护神”[N];解放军报;2002年
相关博士学位论文 前2条
1 冯建民;计算机辅助强度试验系统研究[D];西北工业大学;2002年
2 孟宪宏;混凝土疲劳剩余强度试验及理论研究[D];大连理工大学;2006年
相关硕士学位论文 前8条
1 陈诚;高强度汽车用悬架弹簧盘条的研发[D];复旦大学;2013年
2 薄煜琳;粒化高炉矿渣和氧化镁固化稳定化铅污染粘土的强度、溶出及微观特性的研究[D];东南大学;2015年
3 陆明;座椅安全带固定点强度试验台研制[D];大连理工大学;2012年
4 韩东亮;钻井平台高压管线强度试验安全性研究[D];哈尔滨工程大学;2011年
5 马传亮;利用灰色理论进行混凝土强度早期快速推定的研究与应用[D];重庆大学;2013年
6 刘天宝;高强度铝蜂窝自动化组装工艺及设备的研究[D];重庆理工大学;2013年
7 刘洋;基于全计算法配制C100高强混凝土强度、工作性研究[D];重庆交通大学;2014年
8 高原;混凝土动力强度与静力强度的关系探讨[D];清华大学;2008年
本文编号:1536033
本文链接:https://www.wllwen.com/kejilunwen/huanjinggongchenglunwen/1536033.html