以PHB为碳源驱动的同时亚硝化和反硝化除磷过程研究
本文选题:短程硝化反硝化除磷 切入点:低碳城市污水 出处:《广州大学》2015年硕士论文 论文类型:学位论文
【摘要】:“水体富营养化”问题的日益尖锐促使了传统脱氮除磷工艺的研究与应用发展,但传统脱氮除磷工艺的缺陷也逐渐暴露,同时面临着水行业对污水处理方面提出的低碳可持续发展的要求,传统脱氮除磷工艺已不能满足污水处理发展的需求。本课题所研究的短程硝化反硝化除磷技术(短程SNDPR)能将亚硝化和反硝化除磷过程在同一空间和时间发生,可解决传统脱氮除磷工艺中碳源争夺、污泥龄、能耗高等问题,实现“一碳两用”,适合于碳源偏低的城市污水处理。试验针对以人工模拟的碳源偏低城市污水为处理对象,分步培养亚硝化菌和以亚硝化菌为电子受体的反硝化除磷菌,然后混合于同一系统,进行亚硝化菌和反硝化除磷菌共存的驯化培养。在培养驯化成熟的系统内,研究了进水碳源浓度和总磷浓度对厌氧段PHB积累的影响,并在此基础上,提出前置曝气方式促进PHB最大积累,来解决外碳源最大化积累为碳源驱动力PHB的问题。在后续低氧段,通过考察不同供气模式(连续曝气和间歇曝气)下,短程SNDPR过程中TP、TN、NH4+、NO2-、NO3-和PHB的变化规律,来解析最大化积累的PHB驱动亚硝化和短程反硝化除磷过程速率平衡的有效操控条件。试验结果表明:分步驯化优势菌种而后混合共存培养的方式,能有效实现同时亚硝化和反硝化除磷过程,成熟系统内TN去除率为83.1%,TP去除率为90.2%。进水碳源和总磷浓度与PHB的最大积累量呈正相关,且碳源浓度对PHB积累量的影响比总磷浓度的影响大。比较无前曝气时厌氧PHB最大积累量,增设前曝气运行方式可促进PHB最大化积累。连续曝气模式下,气量为30L/h有利于短程SNDPR的稳定持续发生,其TN去除率为93.7%,TP去除率为96.4%;间歇曝气模式下,低AF值和低fIA值能为系统提供利于短程SNDPR发生的微氧环境,并均化氧化还原反应,PHB降解速率更为平稳,恒定气量为40L/h时,AF值为0.5与fIA值为24工况下短程SNDPR稳定性和效果最佳,TN去除率为91.1%,TP去除率为92.9%。综合厌氧和低氧阶段脱氮除磷效果和PHB变化规律,可知以PHB为碳源驱动的同时亚硝化和反硝化除磷过程中,利用前曝气运行方式最大化PHB厌氧阶段的积累量,并使其在低氧阶段得到均衡有效降解,可为平衡亚硝化与反硝化除磷速率创造有利条件。
[Abstract]:"Eutrophication" problem increasingly sharp prompted the development and application of traditional nitrogen and phosphorus removal, but the defects of the traditional nitrogen and phosphorus removal are gradually exposed, while facing the water requirements of sewage treatment industry low carbon sustainable development is put forward, the traditional nitrogen and phosphorus removal process has been unable to meet the development of sewage treatment the demand. Nitrification and denitrifying phosphorus removal technology research (short SNDPR) can separate nitrification and denitrifying phosphorus removal process at the same time and space, can solve the traditional nitrogen and phosphorus removal process for carbon source, sludge age, high energy consumption, to achieve a "carbon dual-use" for the city sewage treatment to the low carbon source. According to the test of artificial simulation of low carbon city wastewater as treatment object, step by step training nitrosobacteria and nitrosobacteria as electron acceptor for denitrifying phosphorus removal bacteria and mixed. In the same system, sub nitrifying bacteria and denitrifying phosphorus removal bacteria coexisted during acclimation acclimation. The mature system, the effects of carbon source concentration and total phosphorus concentration in influent of anaerobic PHB accumulation, and on this basis, put forward to promote aeration PHB maximum accumulation, to solve the external carbon source the maximum accumulation as the carbon source driving force of PHB. In the follow-up period of hypoxia through the study of different supply modes, (continuous aeration and intermittent aeration), short in the process of SNDPR TP, TN, NH4+, NO2-, changes of NO3- and PHB, to analyze the maximum accumulation of PHB driving conditions can effectively control the balance rate of Asia nitrification and denitrifying phosphorus removal process. The experimental results show that the dominant bacteria and domestication step mix culture method can effectively realize at the same time nitrification and denitrifying phosphorus removal process, mature system in the removal rate of TN is 83.1%, the removal rate of TP As the largest accumulation of 90.2%. carbon source and concentration of total phosphorus and PHB were positively correlated, and the influence of carbon source concentration on PHB accumulation than the effect of TP concentration. There is no pre aeration anaerobic PHB maximum accumulation, before adding aeration mode can promote PHB accumulation. The maximum continuous aeration mode, gas 30L/h is conducive to the stability of the short-range SNDPR persists, the removal rate of TN is 93.7%, the removal rate of TP was 96.4%; intermittent aeration mode, low AF value and low fIA value can provide for the micro aerobic environment short-range SNDPR occurred as a system, and all of the redox reaction, PHB degradation rate is more stable, constant the gas is 40L/h, AF value 0.5 and fIA value of short-range SNDPR stability and effect of the 24 conditions, the removal rate of TN was 91.1%, the removal rate of TP is 92.9%. comprehensive and anaerobic hypoxia stage of nitrogen and phosphorus removal and PHB variation, that using PHB as carbon source driving the same During the process of time nitrification and denitrifying phosphorus removal, the accumulation of PHB anaerobic stage can be maximized by using the pre aeration operation mode, and it can be evenly and effectively degraded in the low oxygen stage, which can create favorable conditions for the balanced nitrification and denitrifying phosphorus removal rate.
【学位授予单位】:广州大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:X703
【参考文献】
相关期刊论文 前10条
1 郝晓地;金铭;胡沅胜;;荷兰未来污水处理新框架——NEWs及其实践[J];中国给水排水;2014年20期
2 刘文如;阴方芳;丁玲玲;高玲慧;王建芳;沈耀良;;选择性排泥改善颗粒污泥亚硝化性能的研究[J];中国环境科学;2014年02期
3 王荣昌;司书鹏;杨殿海;励建全;赵建夫;;温度对生物强化除磷工艺反硝化除磷效果的影响[J];环境科学学报;2013年06期
4 岳治杰;;污水生物处理工艺中低碳运行技术的浅析[J];环境科学与管理;2013年04期
5 李冬;刘丽倩;吴迪;张功良;高伟楠;张昭;张杰;;常温低氨氮SBR亚硝化启动策略研究[J];中国环境科学;2013年02期
6 吴锋;战金艳;邓祥征;林英志;;中国湖泊富营养化影响因素研究——基于中国22个湖泊实证分析[J];生态环境学报;2012年01期
7 李冬;陶晓晓;李占;王俊安;张杰;;SBR亚硝化快速启动过程中影响因子研究[J];环境科学;2011年08期
8 李亚峰;秦亚敏;谢新立;夏鹏;姚敬博;田西满;;间歇曝气条件下短程硝化的实现及影响因素研究[J];环境工程学报;2011年07期
9 包少可;罗丹;李正阳;;A~2O脱氮除磷工艺及其变型工艺比较分析[J];环境保护与循环经济;2011年06期
10 冀周英;陈银广;;碳源对SBR系统短程硝化/反硝化除磷影响的比较研究[J];水处理技术;2011年06期
相关博士学位论文 前1条
1 李燕;短程反硝化除磷动力学模型及工艺技术研究[D];中国矿业大学;2013年
相关硕士学位论文 前4条
1 阳素攀;同时硝化/反硝化除磷系统处理低碳城市污水的过程控制及机理研究[D];广州大学;2012年
2 罗思音;SBR短程同步硝化反硝化除磷试验研究[D];广州大学;2010年
3 林金銮;SBR同步硝化反硝化协同除磷处理城市污水技术研究[D];广州大学;2009年
4 刘医t,
本文编号:1577234
本文链接:https://www.wllwen.com/kejilunwen/huanjinggongchenglunwen/1577234.html