当前位置:主页 > 科技论文 > 环境工程论文 >

磁性纳米吸油材料的制备、表征及性能研究

发布时间:2018-04-26 01:33

  本文选题:乳液聚合法 + 磁性 ; 参考:《南京理工大学》2015年硕士论文


【摘要】:石油及其制品在人类的日常生活中有着极其重要的作用,然而经常发生的石油泄漏事故不仅给自然生态环境带来了巨大的影响,而且威胁到了人类社会的生存和发展。目前,使用吸油材料处理水面溢油是行之有效的方法之一,但是当前使用的吸油材料存在着很多的缺陷,比如油水选择性差、漂浮性差、容易引发对环境的二次污染等等,所以研发新型的吸油材料显得非常重要。本论文集中研究了基于乳液聚合法制备疏水亲油的纳米吸油材料,主要内容包括以下两个部分:1.以纳米四氧化三铁和苯乙烯单体为原料,以十二烷基苯磺酸钠为乳化剂,以二乙烯苯为共聚单体,以偶氮二异丁腈为引发剂,通过乳液聚合法制备了磁性聚苯乙烯纳米吸油材料,其中最佳十二烷基苯磺酸钠的投加量为500mg,二乙烯苯的最佳加入量为0.5mL。所制备的纳米粒子具有良好的磁响应性和漂浮性能,水滴接触角为142.1°,具有不错的疏水性能。所制备的纳米吸油材料对柴油的吸附倍率为2.4g/g,并且在循环5次之后仍保有最大吸附倍率的87.5%。2.确定了以二次乳液聚合这一工艺方法制备PMMA包覆改性的磁性聚苯乙烯纳米吸油材料,甲基丙烯酸甲酯(MMA)单体的最佳加入量为1.5mL。改性后的纳米吸油材料仍然保持着很好的磁响应性、漂浮性以及疏水亲油性。改性后的纳米吸油材料对柴油的吸附倍率为3.6g/g,比未改性之前提高了50%,这主要归因于PMMA中含有更多的甲基和酯基,并且通过二次乳液聚合,高分子的包覆量达到了55%,与油分子之间的范德华力有较大提升。改性后的纳米吸油材料对色拉油和润滑油的吸附倍率分别为4.26和9.41g/g,油品的粘度越高,吸附倍率越大。改性后的吸油材料对于柴油和色拉油可在30s即达到吸附饱和,而对于润滑油则需要1个小时以上。油膜厚度对改性后材料的吸油能力影响较小,pH值和盐分对材料的稳定性几乎没有影响。材料的吸油机制应该为包藏型和凝胶型吸油机理的组合。循环10次后,吸油倍率下降为3.22g/g,为第一次吸附倍率的89%,说明材料有着很好的循环使用能力。
[Abstract]:Oil and its products play an extremely important role in the daily life of human beings. However, the frequent oil spill accidents not only bring great influence to the natural ecological environment, but also threaten the survival and development of human society. At present, the use of oil-absorbing materials to treat oil spills on the water surface is one of the effective methods. However, the oil absorption materials currently used have many defects, such as poor selectivity of oil and water, poor floatability, easy to cause secondary pollution to the environment, and so on. So it is very important to develop new oil absorbent materials. In this paper, the preparation of hydrophobic and oil-hydrophilic nano-absorbent materials based on emulsion polymerization is studied. The main contents are as follows: 1. Nano-ferric tetroxide and styrene monomer were used as raw materials, sodium dodecylbenzene sulfonate as emulsifier, diethylbenzene as copolymerization monomer, azodiisobutyronitrile as initiator. The magnetic polystyrene nano-absorbent material was prepared by emulsion polymerization. The optimum dosage of sodium dodecylbenzene sulfonate and divinylbenzene was 500 mg and 0.5 mL, respectively. The prepared nanoparticles have good magnetic response and floating performance, the contact angle of water droplets is 142.1 掳, and the nanoparticles have good hydrophobic properties. The adsorption ratio of the prepared nano-absorbent to diesel oil is 2.4 g / g, and 87.5% of the maximum adsorption ratio is maintained after 5 cycles. The method of secondary emulsion polymerization was used to prepare magnetic polystyrene nano-absorbent material coated with PMMA. The optimum addition amount of methyl methacrylate monomer was 1.5 mL. The modified nano-materials still have good magnetic response, floatability and hydrophobicity. The adsorption ratio of the modified nano-absorbent to diesel oil is 3.6 g / g, which is 50% higher than that before modification. This is mainly due to the fact that PMMA contains more methyl and ester groups and is polymerized by secondary emulsion polymerization. The encapsulation of the polymer reaches 55 and the van der Waals force between the oil molecules is greatly enhanced. The adsorption ratio of the modified nano-absorbent to salad oil and lubricating oil is 4.26 and 9.41 g / g, respectively. The higher the viscosity of oil is, the greater the adsorption ratio is. The modified absorbent can reach adsorption saturation in 30 s for diesel oil and salad oil, but more than 1 hour for lubricating oil. The oil film thickness has little effect on the oil absorption ability of the modified materials. The pH value and the salt content have little effect on the stability of the modified materials. The oil absorption mechanism of the material should be a combination of the encapsulation type and the gel type oil absorption mechanism. After 10 cycles, the oil absorption ratio decreased to 3.22 g / g, which was 89 times of the first adsorption rate, which shows that the material has good recycling ability.
【学位授予单位】:南京理工大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:X55;TB383.1

【参考文献】

相关期刊论文 前10条

1 李培勋,于波,卫秀成,王天民;吸油树脂的研究进展[J];材料工程;2002年10期

2 林建国,刘颖;围油栏内不均匀溢油迁移扩散的解析分析[J];大连海事大学学报;2001年03期

3 史红星,黄廷林;黄土地区土壤对石油类污染物吸附特性的实验研究[J];环境科学与技术;2002年03期

4 许祝华;赵新生;;海洋水体中的污染物分析及处理[J];海洋开发与管理;2006年05期

5 邹和平;牟林;崔晓健;宋军;;论建立溢油对海洋生态环境污染预警机制的必要性[J];海洋开发与管理;2011年09期

6 陈绍平;聚丙烯纤维在分离油水混合物中的应用[J];化学世界;1985年05期

7 徐俊英,杨庆霄,吴之庆,李文森;影响海水石油烃溶解度的各种因素研究[J];海洋环境科学;1989年04期

8 王力;侯翠芳;;非织造材料在油污染控制中的作用分析[J];环境保护与循环经济;2009年01期

9 张学佳;纪巍;康志军;孙大勇;单伟;王建;;石油类污染物在土壤中的吸附与迁移特性[J];中国石油大学胜利学院学报;2008年03期

10 徐淑姣;常军;牟世辉;;乳化剂对丙烯酸酯乳液增稠剂影响的研究[J];当代化工;2011年02期



本文编号:1803907

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/huanjinggongchenglunwen/1803907.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户63cbe***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com