龙景湖浮游生物和底栖动物群落结构及水质生态学评价研究
本文选题:龙景湖 + 浮游生物 ; 参考:《重庆大学》2015年硕士论文
【摘要】:龙景湖属于三峡库区较为典型的小型山地城市湖泊,为探究其浮游生物及底栖动物群落特征及其分布情况,于2014年1~12月开展了共计12次采样监测工作,主要监测项目为浮游植物、浮游动物及底栖动物。本研究采用多样性指数、相关分析(CA)、聚类分析(HCA)、主成分分析(PCA)和冗余分析(RDA)等方法对数据进行分析以较为全面深入地掌握湖内浮游生物及底栖动物群落受到各环境因子的影响程度及其在不同水域的分布规律,并以此为基础进一步通过多评价方法的联用实现水质状况及营养水平的生态学评价。①浮游植物共检出137种(变种),隶属于8门66属,平均种群密度达7.30×107ind./L,其中种类最多的门类依次为绿藻门、硅藻门和蓝藻门,种群密度最大的则是蓝藻门、绿藻门和隐藻门;通过对优势度进行计算发现颤藻属、纤维藻属及隐藻属为全年优势类群,细微颤藻、螺旋纤维藻及卵形隐藻属于主要优势种;种类季节变化的总体趋势是冬季最多,夏季最少,数量趋势则与之相反,夏季最高,冬季最低;多样性指数H、D、J年均值分别为2.29±0.99,2.75±0.76和0.55±0.23。HCA和PCA基于浮游植物种群密度分布状况将8个采样点分为3类。RDA基于SD、p H和DO等环境因子将8个采样点分为3组,按不同物种与各环境因子的相关性将66属分为4组。②浮游动物检出5大类群62属(种),平均种群密度为1252.34ind./L,其中轮虫种类最多、种群密度最大,原生动物、桡足类次之;全年优势类群为晶囊轮虫属、多肢轮虫属、砂壳虫属、异尾轮虫属、龟甲轮虫属和臂尾轮虫属,全年优势种主要有盖氏晶囊轮虫、长肢多肢轮虫、球形砂壳虫、暗小异尾轮虫及角突臂尾轮虫;种类在春季和夏季均最多,冬季最少,数量上秋季最多,冬季最少;多样性指数H、D、J年均值分别为2.26±0.51、2.60±0.58、0.79±0.06。HCA和PCA基于浮游动物种群密度分布状况的分析结果显示,8个采样点可分为3类。RDA按照SD、p H、DO和t等环境因子将8个采样点分为3组,按不同物种与各环境因子的相关性将62属(科)分为4组。③底栖动物检出3门4纲11目18科26属,平均种群密度为11.57ind./m2,其中节肢动物样品的种类和密度均远超软体动物和环节动物;全年优势类群是长臂虾科,优势度达0.79,全年优势种为日本沼虾;各季节中种类最多的是春季和夏季,冬季最少,数量和重量生物量均为夏季最高,冬季最低;多样性指数H、D、J的年均值分别为0.26±0.16、0.25±0.12和0.19±0.13。HCA和PCA基于底栖动物种群密度分布状况将8个采样点分为3类。RDA根据EC、p H、DO、ORP和t等环境因子将8个采样点分为3组,按不同物种与各环境因子的相关性将18科分为3组。④基于全年监测数据及分析结果通过多方法联用可以得出以下结论:2014年龙景湖水质状况总体上属中污染级别,湖体营养状况总体上处在富营养水平。通过对上述研究结果的综合分析可知,浮游生物和底栖动物群落结构及分布特征可以较为客观全面地反映全湖的总体水质和营养状况以及较长时期内积累、叠加的环境效应和水体动态变化过程,同时对于后续健康水生生态系统构建和长期维持等工作的实施亦具有重要意义。
[Abstract]:Long Jinghu Lake is a typical small mountain city lake in the Three Gorges Reservoir area. In order to explore the characteristics and distribution of plankton and benthic zooplankton community, 12 sampling and monitoring work was carried out in 1~12 month of 2014. The main monitoring items were phytoplankton, zooplankton and benthic animals. CA), cluster analysis (HCA), principal component analysis (PCA) and redundancy analysis (RDA) are used to analyze the data in order to understand the influence degree of the lake plankton and benthic zooplankton community on the environmental factors and their distribution in different waters. The ecological evaluation of water quality and nutrition level. (1) 137 species of phytoplankton were detected, belonging to 8 gates and 66 genera. The average population density was 7.30 * 107ind./L. The most species were green algae gate, diatom gate and cyanobacteria gate. The largest population density was cyanobacteria gate, green algae gate and cryptoalgae gate. It is found that the genus tremor, alga and cryptoalgae are the dominant groups in the whole year, the microalgae, spirulina and oval algae are the main dominant species. The general trend of the seasonal variation is the most winter and the least in summer. The trend is the opposite, the highest in summer and the lowest in winter; the average value of diversity index H, D, J is 2.29 + 0.99,2.75 + 0, respectively. .76 and 0.55 + 0.23.HCA and PCA were divided into 3 types of.RDA based on the density distribution of phytoplankton population. 8 sampling points were divided into 3 groups based on SD, P H and DO, and 66 genera were divided into 4 groups according to the correlation between the different species and the environmental factors. (2) the zooplankton detected 5 groups and 62 genera (species), and the average population density was 1252.34ind./L, The largest number of rotifer species, the largest population density, the protozoa and copepods, the dominant groups in the whole year are the genus rotifer, the genus polybutit, the genus isopara, the genus tortoise and brachiopus, and the dominant species in the year. The species in spring and summer are the most, the lowest in winter, the most in the autumn and the least in winter. The mean value of the diversity index H, D, J is 2.26 + 0.51,2.60 + 0.58,0.79 0.06.HCA and PCA based on the distribution of zooplankton population density, respectively. The results show that the 8 sampling points can be divided into 3 kinds of.RDA according to SD, P H, DO and other environmental causes. The 8 sampling points are divided into 3 groups. According to the correlation of different species and environmental factors, 62 genera (families) are divided into 4 groups. (3) 3 gates, 4 classes, 11 orders, 18 families and 26 genera are detected in benthic animals. The average population density is 11.57ind./m2, and the species and density of arthropods are far super mollusks and tache animals; the dominant group is the prawns family in the whole year. The dominant species is 0.79. The dominant species is in spring and summer. The highest species in each season are spring and summer, the lowest in winter, the lowest in summer, and the lowest in winter. The annual average value of diversity index H, D and J is 0.26 + 0.16,0.25 + 0.12 and 0.19 + 0.13.HCA and PCA based on the population density distribution of benthic zoobenthos. The point is divided into 3 types of.RDA. According to the environmental factors such as EC, P H, DO, ORP and T, the 8 sampling points are divided into 3 groups. 18 families are divided into 3 groups according to the correlation between the different species and the environmental factors. 4. Based on the annual monitoring data and the analysis results, the following conclusions can be obtained through multi method combined use. In 2014, the water quality of long Jinghu Lake is generally in the middle level of pollution, the Lake Camp Through a comprehensive analysis of the above results, we can see that the structure and distribution characteristics of plankton and benthic animals can reflect the overall water quality and nutritional status of the whole lake, as well as the accumulation in a long period, the superimposed environmental effect and the dynamic change process of the water body, and at the same time, The implementation of follow-up health aquatic ecosystem construction and long-term maintenance is also of great significance.
【学位授予单位】:重庆大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:X17;X824
【相似文献】
相关期刊论文 前10条
1 袁兴中,陆健健;围垦对长江口南岸底栖动物群落结构及多样性的影响[J];生态学报;2001年10期
2 崇加荣,吕传生,凌去非,钱培良;昆承湖底栖动物群落结构的研究[J];水利渔业;2002年04期
3 戴雅奇,熊昀青,由文辉;苏州河底栖动物群落恢复过程动态研究[J];农村生态环境;2005年03期
4 段学花;王兆印;程东升;;典型河床底质组成中底栖动物群落及多样性[J];生态学报;2007年04期
5 傅小城;唐涛;蒋万祥;李凤清;吴乃成;周淑婵;蔡庆华;;引水型电站对河流底栖动物群落结构的影响[J];生态学报;2008年01期
6 张饮江;张琴娟;沈过;范鑫丽;魏小杰;罗坤;徐姗楠;何培民;;村镇河道不同类型护岸后底栖动物群落特征及对水环境的影响[J];水产科技情报;2008年01期
7 赵湘桂;曹艳霞;张杰;王备新;蔡德所;;影响漓江底栖动物群落的主要环境因素解析[J];广西师范大学学报(自然科学版);2009年02期
8 王燕华;吴晓辉;赵立新;许志兰;杨明权;廖日红;;潮白河(顺义段)底栖动物群落结构分析[J];北京水务;2009年05期
9 蒋万祥;赖子尼;彭松耀;高原;杨婉玲;庞世勋;;珠江广州段底栖动物群落结构初步研究[J];中国环境监测;2011年05期
10 姜苹红;周易勇;纪磊;肖文娟;宋春雷;;月湖底泥疏浚后底栖动物群落的恢复及其与环境的关系[J];生态环境学报;2012年06期
相关会议论文 前6条
1 陆健健;何文珊;袁兴中;;围垦对长江口南岸底栖动物群落结构及多样性的影响[A];野生动物生态与管理学术讨论会论文摘要集[C];2001年
2 林俊勇;利锋;吴昌华;陈泽滔;邓力静;李敏健;徐江宇;冯麒宇;杨嘉钰;;西南涌底栖动物群落结构多元分析[A];Proceedings of Conference on Environmental Pollution and Public Health(CEPPH 2012)[C];2012年
3 苗滕;康玉辉;周念来;周驰;;生态修复初期内沙湖底栖动物群落结构的初步研究及其生物学评价[A];健康湖泊与美丽中国——第三届中国湖泊论坛暨第七届湖北科技论坛论文集[C];2013年
4 张敏;;三峡水库水位波动对支流库湾底栖动物群落的影响及其时滞性[A];2014年中国环境影响评价研讨会大会报告集[C];2014年
5 蔡永久;姜加虎;张路;陈宇炜;龚志军;;长江中下游湖群大型底栖动物群落结构及影响因素[A];健康湖泊与美丽中国——第三届中国湖泊论坛暨第七届湖北科技论坛论文集[C];2013年
6 蔡永久;姜加虎;张路;陈宇炜;龚志军;;长江中下游湖群大型底栖动物群落结构及影响因素[A];中国水利学会2013学术年会论文集——S2湖泊治理开发与保护[C];2013年
相关博士学位论文 前3条
1 袁兴中;河口潮滩湿地底栖动物群落的生态学研究[D];华东师范大学;2001年
2 罗民波;长江河口底栖动物群落对大型工程的响应与生态修复研究[D];华东师范大学;2008年
3 王睿照;互花米草入侵对崇明东滩盐沼底栖动物群落的影响[D];华东师范大学;2010年
相关硕士学位论文 前10条
1 谢钊;太湖大型底栖无脊椎动物群落结构特征及其对环境因子的响应[D];南京农业大学;2014年
2 桂芳艳;转Cry1Ab/Ac基因水稻对稻田底栖动物群落的影响[D];湖南科技大学;2015年
3 成豪;龙景湖浮游生物和底栖动物群落结构及水质生态学评价研究[D];重庆大学;2015年
4 蔡赫;嫩江下游底栖动物群落结构及水质评价研究[D];东北林业大学;2013年
5 沈忱;太湖湖滨生态修复区底栖动物群落结构及梯度分布[D];南京大学;2012年
6 赵永晶;新疆乌伦古湖底栖动物群落结构的研究[D];华中农业大学;2010年
7 李永刚;密云水库浮游生物底栖动物群落结构及生物多样性研究[D];中国农业科学院;2013年
8 胡本进;阊江河一至六级支流底栖动物群落结构和功能及其BI指数水质评价[D];南京农业大学;2003年
9 王艳杰;辽河流域底栖动物群落特征与生境指标关系[D];辽宁大学;2012年
10 李俊;漳卫南运河流域浮游生物和底栖动物群落的多样性调查[D];华中农业大学;2013年
,本文编号:1811217
本文链接:https://www.wllwen.com/kejilunwen/huanjinggongchenglunwen/1811217.html