基于MODIS植被指数时间谱的太湖2001年—2013年蓝藻爆发监测
本文选题:MODIS + 时谱 ; 参考:《光谱学与光谱分析》2016年05期
【摘要】:藻类水华爆发已成为影响内陆水体生态环境的重要因素。遥感能够提供实时的大范围观测,在水华监测中起到越来越重要的作用。遥感植被指数已广泛应用于藻类水华监测中,通过对研究区植被指数图像进行阈值分割,能够反映不同子区域内的藻类爆发程度;然而阈值分割法的结果只能反映某一时间点(图像获取时)的藻类爆发状况,无法表征长时间内藻类的变化。相比于单个时间点的植被指数,植被指数时间谱(时谱)包含藻类的物候信息,能够更加全面准确地反映藻类的长时间变化。目前,植被指数时间谱还尚未应用到水华相关研究中。选取2001年—2013年太湖区域的MODIS NDVI数据,构建年度NDVI时谱数据,利用(support vector machine,SVM)方法对每年的太湖蓝藻水华爆发强度进行分类,将太湖重度、中度和轻度蓝藻水华爆发的区域以及水生植物的区域提取出来,得到其空间分布和面积;并从2007年的时谱数据中抽取了8个时间点的NDVI图像,利用传统阈值分割法提取太湖重度、中度和轻度蓝藻水华爆发的区域,将结果与2007年时谱数据分类的结果进行对比。结果表明:所提出的方法能够更加全面准确地对太湖蓝藻爆发强度进行分类,通过NDVI时谱曲线提供的丰富物候信息可准确区分蓝藻与水生植被区域。本研究有望为准确掌握和预测藻类水华的爆发趋势及强度提供有效手段。
[Abstract]:The eruption of algae Shui Hua has become an important factor affecting the ecological environment of inland water bodies. Remote sensing can provide real-time wide-range observation and play a more and more important role in Shui Hua monitoring. Remote sensing vegetation index has been widely used in the monitoring of algae Shui Hua. Through threshold segmentation of vegetation index image in the study area, it can reflect the degree of algae eruption in different sub-regions. However, the results of threshold segmentation method can only reflect the algae explosion at a certain time point (image acquisition), and can not represent the changes of algae over a long period of time. Compared with the vegetation index of a single time point, the time spectrum of vegetation index (time spectrum) contains phenological information of algae, which can reflect the long-term variation of algae more comprehensively and accurately. At present, the time spectrum of vegetation index has not been applied to Shui Hua. The MODIS NDVI data of Taihu Lake region from 2001 to 2013 were selected to construct the annual NDVI time spectrum data, and the annual Shui Hua burst intensity of cyanobacteria was classified by using the support vector machine (SVM) method. The area of medium and mild cyanobacteria Shui Hua outbreak and the area of aquatic plants were extracted, and their spatial distribution and area were obtained. The NDVI images of eight time points were extracted from the time spectrum data of 2007. The regions of severe, moderate and mild cyanobacteria outbreaks in Taihu Lake were extracted by traditional threshold segmentation method, and the results were compared with the results of spectral data classification in 2007. The results show that the proposed method can more comprehensively and accurately classify the burst intensity of cyanobacteria in Taihu Lake, and the abundant phenological information provided by the NDVI time-spectrum curve can accurately distinguish the cyanobacteria from the aquatic vegetation area. This study is expected to provide an effective means to accurately grasp and predict the trend and intensity of algae Shui Hua outbreak.
【作者单位】: 中国科学院遥感与数字地球研究所遥感科学国家重点实验室;中国科学院大学;
【基金】:国家自然科学基金项目(41201348,41371359) 高分水利遥感应用示范系统项目(08-Y30B07-9001-13/15-01)资助
【分类号】:X524;X87
【相似文献】
相关期刊论文 前10条
1 陈珂;芮建勋;;上海市城市热场与植被指数的相关性[J];吉首大学学报(自然科学版);2007年02期
2 冯通;从植被指数看香港的环境及变化[J];地理学报;1997年S1期
3 K.P.GALLO,A.L.McNAB,朱建国;城市热岛效应评价的植被指数法[J];遥感信息;1997年01期
4 姬金虎,李良序,肖继东;EOS/MODIS-NDVI法在新疆火情监测中的应用[J];新疆气象;2005年01期
5 段英杰;何政伟;诸丽娟;卢涵宇;刘志红;;基于MODIS的西藏荒漠化动态监测研究[J];广西大学学报(自然科学版);2012年02期
6 朱云燕,朱翔,李卓卿;归一化差值植被指数在土地覆盖遥感动态调查中的应用[J];云南环境科学;2003年04期
7 张春桂;;用MODIS植被指数研究福州城区空间扩展变化[J];气象;2006年10期
8 王澄海,惠小英;以植被指数0.12为指标看我国的荒漠化与草原界限的变化[J];中国沙漠;2005年01期
9 江东,王乃斌,杨小唤,刘红辉;植被指数-地面温度特征空间的生态学内涵及其应用[J];地理科学进展;2001年02期
10 王艳姣;张培群;董文杰;闫峰;;基于MODIS数据的重庆市地表热环境效应研究[J];环境科学研究;2008年03期
相关会议论文 前1条
1 辛红梅;张杰;马毅;初佳兰;;基于植被指数的赤潮高光谱敏感波段确定方法初探[A];第十四届全国遥感技术学术交流会论文选集[C];2003年
,本文编号:1850974
本文链接:https://www.wllwen.com/kejilunwen/huanjinggongchenglunwen/1850974.html