竹炭反硝化滤池处理城市污水处理厂尾水脱氮试验研究
本文选题:污水厂尾水 + 固体缓释碳源 ; 参考:《南京林业大学》2015年硕士论文
【摘要】:本课题以城市污水处理厂尾水为研究对象,从麦秆、芦苇杆、玉米芯三种农业废弃物中筛选出一种作为反硝化外加固体碳源,以吸附性材料竹炭作为反硝化生物滤池的填料,针对低C/N的城市污水处理厂尾水进行脱氮处理试验研究,并研究了玉米芯的反硝化特性。试验结果表明:(1)麦秆、芦苇杆、玉米芯三种材料静态释放COD的规律符合双倒数关系方程,拟合方程分别为1/c=0.0207/t+0.0239,1/c=0.3498/t+0.1435,1/c=0.0595/t+0.0129。分析得出玉米芯释放COD饱和值大,释碳潜力大,传质阻力大,释碳缓慢,是一种良好的缓释碳源材料。(2)采用“按设计流速连续流培养方式”对竹炭反硝化滤池进行挂膜是可行的。挂膜结果显示:C/N(COD/NO3--N)=4~5、HRT=2h、室温保持在20℃左右,经过13天生物膜即可成熟,NO3--N平均去除率在80%以上。(3)以模拟城市污水处理厂尾水作为进水,将玉米芯柱与竹炭柱串联作为反应器,研究不同水力停留时间、COD进水负荷、NO3--N进水负荷等工况条件下,反应器对尾水的处理效果。在进水COD 20~60mg/L,进水NO3--N 15~30mg/L,水力停留时间1~4h下,反应器出水低于一级A标准总氮浓度限值,反应器稳定后总氮容积负荷最大为0.585kg/(m3?d)。(4)对反应器运行期间的COD与NO3--N进行衡算,得到去除1gNO3--N需玉米芯4.77g,释放1gCOD需玉米芯质量为2.01g。用电子扫描显微镜观察反应器中的玉米芯和竹炭,其上生物膜生长紧密,玉米芯的生物膜中观察到的菌以球菌短杆菌为主,竹炭的生物膜中观察到丝状菌、球菌、短杆菌。推测观察到的球菌和短杆菌为反硝化菌中的微球菌属、假单胞菌属和色杆菌属。(5)微生物和NO3--N对玉米芯总有机碳TOC的释放速率有影响,玉米芯释放有机物受到水中NO3--N的响应控制。玉米芯反硝化的最佳温度为30℃,最佳pH为7.8,最大反硝化速率为5.80 mgNO3--N/(gSS?h)。
[Abstract]:Taking the tail water of the municipal wastewater treatment plant as the research object, a kind of denitrification and solid carbon source was selected from three kinds of agricultural waste of wheat straw, reed rod and corncob. The adsorptive material bamboo charcoal was used as the filler of the denitrifying biological filter. The experimental study on the removal of nitrogen in the tail water of the low C/N municipal wastewater treatment plant was studied and studied. The denitrification characteristics of the corn cored were investigated. The results showed that: (1) the law of static release of COD from three kinds of material of wheat straw, reed rod and corn core conforms to the equation of double reciprocal relation. The fitting equation is 1/c=0.0207/t+0.0239,1/c=0.3498/t+0.1435,1/c=0.0595/t+0.0129. analysis, respectively, that the saturation value of COD release in the jade core is large, the carbon release potential is large and the mass transfer resistance is high. It is a good carbon source material for slow release of carbon. (2) it is feasible to use the "continuous flow culture method according to design flow" for bamboo charcoal denitrification filter. The results show that C/N (COD/NO3--N) =4~5, HRT=2h, room temperature remains around 20, after 13 days of biofilm, the average removal rate of NO3--N is above 80%. (3) Taking the tail water of the municipal sewage treatment plant as the influent, the corn core column and the bamboo charcoal column are connected in series as the reactor. The treatment effect of the reactor on the tail water is studied under the conditions of different hydraulic retention time, COD influent load and NO3--N loading load. The reactor is under the influent COD 20~60mg/L, the water intake NO3--N 15~30mg/L, the hydraulic retention time 1~4h, and the reactor. The effluent is lower than the standard A standard total nitrogen concentration, and the maximum total nitrogen volume load is 0.585kg/ (M3? D) after the reactor is stable. (4) to check the COD and NO3--N during the operation of the reactor, the 1gNO3--N need to remove the corn core 4.77g, and the 1gCOD core quality is released for 2.01g. using the electron scanning microscope to observe the corn core and bamboo charcoal in the reactor. The biofilm on the biofilm was closely grown, and the bacteria observed in the biofilm were mainly short bacilli, and filamentous bacteria, cocci, and bacilli were observed in the biofilm of bamboo charcoal. The observed micrococcus and Bacillus brevis were Micrococcus, Pseudomonas and coloured fungus in the denitrifying bacteria. (5) microorganism and NO3--N to the total organic carbon TOC of corn cob The release rate of the corn core is controlled by the response of NO3--N in the water. The best temperature of the denitrification is 30, the best pH is 7.8, the maximum denitrification rate is 5.80 mgNO3--N/ (gSS? H).
【学位授予单位】:南京林业大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:X703
【参考文献】
相关期刊论文 前10条
1 方晶晶;马传明;刘存富;;反硝化细菌研究进展[J];环境科学与技术;2010年S1期
2 杨兴豹;李激;阚薇莉;赵欣萍;唐骋彪;陈宇;张超;;Denite~汶深床反硝化滤池在污水厂升级改造中的应用[J];中国给水排水;2011年12期
3 张海斌;童胜;;浅谈V型滤池的工艺设计[J];工业安全与环保;2009年01期
4 孙迎雪;胡银翠;孙云祥;邵一如;;反硝化生物滤池深度脱氮机理[J];环境工程学报;2012年06期
5 胡宝兰;郑平;徐向阳;金仁村;;一株反硝化细菌的鉴定及其厌氧氨氧化能力的证明[J];中国科学C辑:生命科学;2006年06期
6 赵联芳;朱伟;高青;;补充植物碳源提高人工湿地脱氮效率[J];解放军理工大学学报(自然科学版);2009年06期
7 王晓姗;刘杰;于建生;;海洋氮循环细菌研究进展[J];科学技术与工程;2009年17期
8 周海红;赵璇;王建龙;;利用可生物降解聚合物去除饮用水源水中硝酸盐[J];清华大学学报(自然科学版);2006年03期
9 郑俊;孙楠;;不同性质滤料的反硝化生物滤池脱氮试验研究[J];水处理技术;2011年09期
10 岳三琳;刘秀红;施春红;李鑫玮;甘一萍;杨庆;;生物滤池工艺污水与再生水处理应用与研究进展[J];水处理技术;2013年01期
相关硕士学位论文 前1条
1 章e,
本文编号:1935652
本文链接:https://www.wllwen.com/kejilunwen/huanjinggongchenglunwen/1935652.html