远场水下爆炸作用下舰船设备冲击响应一体化动力学模型
本文关键词:基于本征函数的舰船冲击环境工程化预报方法,由笔耕文化传播整理发布。
全文:
PDF
(558 KB)
(1 KB)
输出: BibTeX | EndNote (RIS)
背景资料
摘要 提出了一种远场水下爆炸作用下舰船设备冲击响应一体化动力学模型。该模型将动态设计分析方法(DDAM)与Taylor平板理论相结合,,使得对舰船设备冲击响应分析更为高效。将船体外壳看做平板,将船体各层甲板和设备看做附加在平板上的多个质量,将水下爆炸冲击波看做指数衰减波,形成了一维分析模型。能够根据水下爆炸当量、爆距、舰艇吨位、总尺度、结构和设备质量与支撑刚度等参数预测舰船与设备的冲击响应。预测结果与舰船缩比模型水下爆炸试验结果进行了对比。从总体上看,船体冲击响应谱的趋势和量级一致。
服务
E-mail Alert
RSS
收稿日期: 2011-09-06 出版日期: 2012-05-30
PACS: U664.11
O383+.3
基金资助:国家自然科学基金项目(10672181)
通讯作者: 杜志鹏
引用本文:
汪 玉,计 晨,杜志鹏等. 远场水下爆炸作用下舰船设备冲击响应一体化动力学模型[J]. 工程力学, 2013, 30(3): 390-394.
WANG Yu,JI Chen,DU Zhi-peng et al. INTEGRATIVE DYNAMIC MODEL OF THE SHIP HULL AND EQUEPMENTS SUBJECTED TO FAR FIELD UNDERWATER EXPLOSION[J]. Engineering Mechanics, 2013, 30(3): 390-394.
链接本文:
或
Wang Yu, Zhao Jianhua, Du Jianye, Mu Chun. Simulation on antishock performance of a marine diesel engine by using finite element calculation based on multibody dynamics [J], Journal of Vibration and Shock, 2009, 28(11): 87―90. (in Chinese)
[9] 赵建华, 汪玉, 计晨, 杨毅. 柴油机主要固定件受水下爆炸冲击的强度分析[J]. 机械强度, 2008, 30(5): 707―712.
"[1]Neal E. Second order hydrodynamic forces due to stochastic excitation [C]. Proceedings of the 10th ONR Symposium, Cambridge, MA, 1974.
[2] Vinje T. On the statistical distribution of second-order forces and motions [J]. International Shipbuilding Progress, 1983, 30: 58―68.
Zhao Jianhua, Wang Yu, Ji Chen, Yang Yi. Strength analysis of the main fixed assembly of diesel engine subjected to underwater explosion [J]. Journal of Mechanical Strength, 2008, 30(5): 707―712. (in Chinese)
[10]汪玉. 实船水下爆炸冲击试验及防护技术[M]. 北京: 国防工业出版社, 2010: 64―70.
Wang Yu. Ship shock trial and protection technique [M]. Beijing: National Defence Industry Press, 2010: 64―70. (in Chinese)
[3] Naess A. The statistical distribution of second-order slowly varying forces and motions [J]. Applied Ocean Research, 1986, 8(2): 110―118.
[4] Naess A. On the statistical analysis of slow-drift forces and motions of floating offshore structures [C]. Proceedings, 5th International Offshore Mechanics and Arctic Engineering Symposium, Tokyo, Japan, 1986: 317―329.
[5] Naess A. Response statistics of non-linear, second-order transformations to Gaussian loads [J]. Journal of Sound and Vibration, 1987, 115(1): 103―127.
[11]Shin Y S. Ship shock modeling and simulation for far-field underwater explosion [J]. Computers and Structures, 2004, 82: 2211―2219.
[12]冯麟涵, 姚熊亮, 汪玉, 刘世明. 基于本征函数的舰船冲击环境工程化预报方法[J]. 中国造船, 2010, 51(3): 65―76.
[6] Naess A. Approximate first-passage and extremes of narrow-band Gaussian and non-Gaussian random vibration [J]. Journal of Sound and Vibration, 1990, 138(3): 365―380.
Feng Linhan, Yao Xiongliang, Wang Yu, Liu Shiming. Engineering prediction method of ship impulsive environment based on empirical eigenfunction [J]. Shipbuilding of China, 2010, 51(3): 65―76. (in Chinese)
[13]Taylor G I. The pressure and impulse of submarine explosion waves on plates [C]. The Scientific Papers of G I Taylor. Cambridge: Cambridge University Press, 1963.
[14]Reid W D. The response of surface ships to underwater explosions [R]. Victoria, Australia: Defence Science and Technology Organisation-GD-0109. 1996.
[15]汪玉, 舰艇水下爆炸试验及冲击分析技术[M]. 北京: 国防工业出版社, 2007: 46―52.
Wang Yu. Ship shock trial and analysis technique [M]. Beijing: National Defence Industry Press, 2007: 46―52. (in Chinese)
"本文关键词:基于本征函数的舰船冲击环境工程化预报方法,由笔耕文化传播整理发布。
本文编号:238174
本文链接:https://www.wllwen.com/kejilunwen/huanjinggongchenglunwen/238174.html