静态扬尘对呼吸途径健康风险评价的影响研究
[Abstract]:The contents of heavy metals (Cd, As, Cr, Ni and Hg) were determined by distributing and collecting soil samples in a waste chemical plant area and a sand yard area in the central part of Hunan Province, and the two-phase theory of aerodynamics and gas-solid was combined. The model of PM10 concentration of storage yard is set up for open-air pollution site, and the model of exposure assessment and health risk assessment are included to study the effect of static dust on exposure assessment and health risk assessment. Therefore, this paper provides the theoretical basis for the prevention, treatment and treatment of the soil pollution in the plant area and the area of the sand yard and the surrounding area, and provides a simple and practical parameter determination method for the health risk evaluation. The main conclusions are as follows: (1) The heavy metal content and vertical distribution in the surface soil of the contaminated site: the average content of the five heavy metals is the same as that of Cr and Ni, and the remaining 3 species are in excess of the national soil environmental quality secondary standard (GB15618-1995) and the soil background value of Hunan Province. As the content of As is the highest, the content of Cd is the second, the overproof rate of the sample is over 58. 54%, and the full-distance and coefficient of variation of Cd, As and Hg are all larger. The content of Cr, As and Hg in the soil of the plant area is higher than that of the same depth sand yard area, and the vertical distribution of most heavy metals (in addition to Ni) in the soil of the sand yard and the plant area shows a downward downward trend from the surface layer. while some heavy metals increase in the vertical direction or the content change is not large. (2) The PM10 concentration of the near ground is affected by the meteorological factors (such as wind direction and wind speed), and is affected by the S, SSE and SSW wind in the summer, and the average wind speed is the largest. The concentration of PM10 in the northern and commercial areas of the plant is at the maximum of 0.30mg/ m3, and the whole year is affected by the NW and NNW wind. The concentration of PM10 in the tourist area is more than 0. 15 mg/ m3. The concentration of PM10 is larger in the plant area and the area of the sand yard and its vicinity, and the concentration of PM10 decreases rapidly with the increase of the diffusion area. (3) The results showed that the daily exposure (ADI) was proportional to the concentration of PM10, inversely proportional to the diffusion area, and the daily exposure to the exposed population in the area of the pollution source and the nearby exposed population increased rapidly. The population is vulnerable to contaminants. The exposure dose of the child is higher than that of the adult, which makes the child more vulnerable to the contaminants due to the reasons of the physical characteristics, the behavior pattern, the life rule, and the like. (4) The single non-carcinogenic hazard quotient (HQ), the total hazard index (HI) and the life-long excess carcinogenic risk (R) of heavy metals are linearly increasing with the concentration of PM10. The concentration of PM10 is high, and the health threat to exposed population is the most. The non-carcinogenic risk of Cd and As, the contribution rate of the two to the total hazard index (HI) was 56. 73% and 37. 78%, respectively. When the concentration of PM10 exceeds 0.125 mg/ m3, HQ (Cd) 1; when the concentration of PM10 exceeds 0.175 mg/ m3, HQ (As) 1. Cd, Cr, As has a carcinogenic risk, and when the concentration of PM10 is 0.050 mg/ m3, R10-6 of three heavy metals and the level of cancer risk AsCrCd. The non-carcinogenic and carcinogenic risk of children is higher than that of adults. Ni has a low level of cancer risk for adults, and for children, when PM10 reaches 0.400 mg/ m3, R (Ni) exceeds the risk threshold and has an oncogenic risk. (5) The probability distribution of HQ and R of Cd, As, Cr, Ni and Hg in two types of exposed population is very close, and the probability of the HQ of Cd and As in the safety threshold is 69% and 61%, respectively. The probability distribution and reliability of the four non-threshold heavy metal carcinogenic risk values were respectively 53%, 84%, 96% and 4%, respectively. The concentration of heavy metals and the concentration of PM10 are the main factors that affect the daily exposure dose, non-carcinogenic risk level and the level of life-long oncogenic risk of Cd, As, Cr, Ni and Hg in the body weight of human body through the breathing path. Therefore, in order to prevent the occurrence of the regional risk accident, the heavy metal in the soil of the pollution source area is controlled and repaired. (6) The risk control values of the heavy metal Cd, Cr, As and Ni in the contaminated site were 2.13 mg/ kg, 0.046 mg/ kg, 0.89 mg/ kg and 10. 15mg/ kg, respectively, on the basis of the risk characterization results.
【学位授予单位】:湖南大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:X823;X513
【相似文献】
相关期刊论文 前10条
1 于云江;张颖;车飞;孙朋;蔡煜;向明灯;王琼;;环境污染的健康风险评价及其应用[J];环境与职业医学;2011年05期
2 王宗爽;段小丽;王贝贝;王叶晴;钱岩;聂静;张金良;;土壤/尘健康风险评价中的暴露参数[J];环境与健康杂志;2012年02期
3 汪晶,阎雷生;简论对健康风险评价的管理[J];环境科学研究;1993年06期
4 田裘学;健康风险评价的基本内容与方法[J];甘肃环境研究与监测;1997年04期
5 田裘学;健康风险评价的不确定性及癌风险评价[J];甘肃环境研究与监测;1999年04期
6 王永杰,贾东红,孟庆宝,束富荣;健康风险评价中的不确定性分析[J];环境工程;2003年06期
7 谌宏伟;陈鸿汉;刘菲;何江涛;沈照理;孙静;;污染场地健康风险评价的实例研究[J];地学前缘;2006年01期
8 潘小川;;室内环境的健康风险评价[J];建筑热能通风空调;2006年05期
9 张可;胡志锋;张勇;周丹;高群杰;;重庆市城区饮用水源健康风险评价[J];四川环境;2007年02期
10 晁雷;周启星;陈苏;崔爽;;沈阳某冶炼厂废弃厂区的人类健康风险评价[J];应用生态学报;2007年08期
相关会议论文 前10条
1 孙金华;马建华;;污染场地健康风险评价述评[A];第七届全国地理学研究生学术年会论文摘要集[C];2012年
2 杜布云;冯新斌;李平;周俊;;贵州万山地区儿童汞暴露现状及健康风险评价[A];第七届全国环境化学大会摘要集-S12 重金属污染与修复[C];2013年
3 段小丽;;以健康风险评价为核心,推动环保科学决策[A];新观点新学说学术沙龙文集9:环境污染与人体健康[C];2007年
4 孟庆宝;赵三平;朱勇兵;李瑞雪;王永杰;;营区场地污染健康风险评价与治理展望——以某部营区场地污染为例[A];2010中国环境科学学会学术年会论文集(第一卷)[C];2010年
5 龚选波;王广才;;石油烃污染场地健康风险评价[A];地下水开发利用与污染防治技术专刊[C];2009年
6 朱建雯;王灵;钱翌;王亚宇;郑春霞;;乌鲁木齐市菜地土壤和蔬菜铬含量特征及其健康风险评价[A];第二届重金属污染监测风险评价及修复技术高级研讨会论文集[C];2008年
7 韦炳干;姜逢清;李雪梅;牟书勇;;乌鲁木齐市道路沙尘重金属污染及其健康风险评价[A];第二届重金属污染监测风险评价及修复技术高级研讨会论文集[C];2008年
8 万译文;康天放;秦静;张雁;;城市自来水中有机氯污染物的测定与健康风险评价[A];持久性有机污染物论坛2008暨第三届持久性有机污染物全国学术研讨会论文集[C];2008年
9 杨刚;伍钧;孙百晔;周红艳;;雅安市耕地土壤重金属健康风险评价[A];第三届全国农业环境科学学术研讨会论文集[C];2009年
10 周国宏;彭朝琼;余淑苑;刘国红;李思果;李锦;蓝涛;刘宁;黄广文;刘桂华;谢建滨;;深圳市饮用水源水重金属污染物健康风险评价[A];2011年全国环境卫生学术年会论文集[C];2011年
相关重要报纸文章 前4条
1 中国环境科学研究院环境污染与健康科研创新基地副研究员、首席专家助理 中国人群环境暴露行为模式研究项目负责人、《报告》和《手册》主编 段小丽;加强基础研究 提高健康风险评价准确性[N];中国环境报;2014年
2 本报记者 李军;暴露参数填补国内研究空白[N];中国环境报;2014年
3 李萱 环境保护部环境与经济政策研究中心;国外如何立法保障人体健康?[N];中国环境报;2014年
4 复旦大学公共卫生学院教授、中国人群环境暴露行为模式研究技术顾问 阚海东;暴露参数如何应用?[N];中国环境报;2014年
相关博士学位论文 前7条
1 李飞;城镇土壤重金属污染的层次健康风险评价与量化管理体系[D];湖南大学;2015年
2 谌宏伟;污染场地健康风险评价[D];中国地质大学(北京);2006年
3 化勇鹏;污染场地健康风险评价及确定修复目标的方法研究[D];中国地质大学;2012年
4 刘建龙;基于随机理论的住宅室内环境健康风险评价及模拟方法研究[D];湖南大学;2008年
5 李丽娜;上海市多介质环境中持久性毒害污染物的健康风险评价[D];华东师范大学;2007年
6 李博;混合型城市污水再生水中微量有机污染物健康风险评价[D];郑州大学;2014年
7 仇付国;城市污水再生利用健康风险评价理论与方法研究[D];西安建筑科技大学;2004年
相关硕士学位论文 前10条
1 张楠;食品中微量元素的健康风险评价[D];河北大学;2008年
2 曹晨亮;烟草镉的健康风险评价和消减技术研究[D];中国农业科学院;2015年
3 汪健;可挥发性致癌物污染场地周边人群健康风险研究[D];兰州大学;2015年
4 聂宇;某化工污染场地土壤健康风险评价与案例研究[D];华北电力大学(北京);2016年
5 聂立刚;北京市顺义区农村饮水现状及健康风险评价[D];中国疾病预防控制中心;2016年
6 刘文楚;基于土地利用方式的城镇土壤重金属空间概率健康风险评价研究[D];湖南大学;2016年
7 高智花;静态扬尘对呼吸途径健康风险评价的影响研究[D];湖南大学;2015年
8 赵洪阳;土壤地下水污染现场健康风险评价技术对比研究[D];清华大学;2008年
9 黄龙;水源地健康风险评价研究[D];苏州科技学院;2010年
10 崔超;污染场地健康风险评价研究[D];西北师范大学;2012年
,本文编号:2389600
本文链接:https://www.wllwen.com/kejilunwen/huanjinggongchenglunwen/2389600.html