邻苯二酚乙胺与环境友好型溶剂的相互作用研究
[Abstract]:Natural water contains some phenols and amines because of the pollution of industrial wastewater and domestic sewage. Long-term intake of phenol-containing water can cause insomnia, anemia and other poisoning symptoms. Therefore, it is of great significance to detect the content of this kind of substances. Catechol ethylamine is an important biomolecule, which contains phenolic hydroxyl and amino groups, and has little pollution to the environment. Taking catechol ethylamine as an example, a detailed study on its performance and content can provide some theoretical basis for other phenols and amines. In addition, appropriate solvents should be selected for the determination of properties and contents, and solvent properties and solvent effects (such as dielectric effect, salt effect, dissociation effect, solvent-solute interaction, etc.) will affect solute properties. The chemical reaction process and the reaction product have important influence. The study of the interaction between catecholamines and solvents can provide a theoretical basis for the research and application of phenols and amines in the fields of environmental chemistry, drug chemistry and life sciences. In this paper, two environment-friendly solvents, water and ionic liquid, which are commonly used in the determination of catecholamines, are chosen as the research objects. The interaction between them and catechol ethylamine hydrochloride (3,4-dihydroxyphenethylamine hydrochloride, abbreviated as DH) was studied by electrochemical and nuclear magnetic resonance (NMR) methods. The effects of two solvents on the micro-environment of DH were investigated, and the density functional calculation and topological analysis of the hydrogen-bonded complexes formed by water and DH were carried out by quantum chemistry. Firstly, the effects of water and ionic liquids on the properties of DH and their interactions were studied by cyclic voltammetry and nuclear magnetic resonance (NMR). The experimental results show that water can stabilize DH and inhibit the electrooxidation of catechol ethylamine to a certain extent. With the increase of DH concentration, the interaction between DH and solvent increased. However, there is a 蟺-蟺 stacking interaction between the imidazole ring of ionic liquids and the benzene ring of DH. The results of the two interactions make DH more prone to electrooxidation and thus enhance its electrochemical activity. Secondly, the hydrogen bonding between water and protonated catechol ethylamine (DH) and catechol ethylamine was studied by density functional theory (DFT), and the geometric configuration of hydrogen bond complex formed between water and protonated catechol ethylamine was optimized. A series of parameters of various hydrogen bond complexes are discussed theoretically. It was found that the formation of hydrogen bond effectively protected the two hydroxyl groups on catechol ethylamine, which made it difficult to remove the H above it, inhibited the electrooxidation of catechol ethylamine to a certain extent, and enhanced the stability of catechol ethylamine. Finally, the topological analysis of the calculation results of water and DH is carried out by means of the atom theory (AIM) in molecules, and the existence of hydrogen bonds is further confirmed. The theoretical and experimental results are in agreement with each other. Exploring the interaction mode between catechol ethylamine molecule and environment friendly solvent can provide a reference for the extraction and separation of other complex phenol and amine compounds in wastewater, and provide reference for the selection of appropriate solvents for the extraction and separation of other complex phenol and amine compounds in wastewater. And reduce the environmental pollution during the experiment; It is also of great significance for the removal of residual catechol ethylamine in environmental pollution and the detection of phenols and amines in wastewater.
【学位授予单位】:河南大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:X832
【相似文献】
相关期刊论文 前10条
1 ;邻苯二酚市场潜力巨大[J];技术与市场;2000年11期
2 梁诚;邻苯二酚的生产及应用[J];精细石油化工进展;2000年04期
3 崔小明;;邻苯二酚的生产及应用[J];化学推进剂与高分子材料;2000年06期
4 崔小明;;邻苯二酚的生产及应用[J];化工之友;2001年04期
5 叶竹圭;邻苯二酚的开发应用前景[J];精细石油化工;2003年03期
6 王敏;开发邻苯二酚正逢良机[J];化工生产与技术;2003年02期
7 王朝进,章亚东,蒋登高,高晓蕾,王雷;邻苯二酚清洁合成方法的研究进展[J];河南化工;2003年04期
8 骆生;邻苯二酚的开发与应用进展[J];化工中间体;2004年08期
9 仁文;;邻苯二酚的开发与应用[J];精细化工原料及中间体;2004年11期
10 王莉;邻苯二酚的研究进展及市场前景[J];化工中间体;2005年08期
相关会议论文 前7条
1 熊建文;陈威;武波;;邻苯二酚1,2-双加氧酶基因的突变对Pseudomonas sp.B3-1产邻苯二酚的影响[A];2008年中国微生物学会学术年会论文摘要集[C];2008年
2 张宗武;申佩弘;梁璇;张敏;李俊芳;武波;;产邻苯二酚工程菌的构建及发酵条件的优化[A];第三届全国化学工程与生物化工年会论文摘要集(上)[C];2006年
3 宋远志;谢吉民;陈敏;舒火明;吴云龙;;实验与理论研究邻苯二醌/邻苯二酚的电化学(英文)[A];中国化学会第十四届有机分析及生物分析学术研讨会会议论文摘要集[C];2007年
4 赵小辉;杨季冬;周尚;贺薇;周邦智;吕昕;朱乾华;;荧光法测定水体中痕量邻苯二酚[A];第六届全国环境化学大会暨环境科学仪器与分析仪器展览会摘要集[C];2011年
5 王建营;吴福丽;胡文祥;延玺;刘连英;;超声催化DCC法合成邻苯二酚类铀促排化合物[A];第三届全国有机化学学术会议论文集(上册)[C];2004年
6 吴苏红;景遐斌;黄宇彬;;邻苯二酚接枝可降解的两亲性聚合物制备核交联的胶束[A];2011年全国高分子学术论文报告会论文摘要集[C];2011年
7 李林鹏;林陵;曾崇余;;Na对制备邻苯二酚的Ni/硅藻土催化剂催化性能的影响[A];第六届全国工业催化技术及应用年会论文集[C];2009年
相关重要报纸文章 前10条
1 吕楠;四大利好可望拉动邻苯二酚消费[N];中国化工报;2005年
2 ;邻苯二酚 市场潜力 大 大 大[N];中国物资报;2000年
3 兰州石化研究院提供;邻苯二酚市场需求潜力大[N];中国石油报;2003年
4 本报记者 徐红卫;主动维权 三吉利两次瓦解欧盟企业强势倾销[N];中国工业报;2005年
5 胡斌;受冲击举步维艰 求发展拓展用途[N];中国化工报;2002年
6 王维中;罗地亚在华邻苯二酚业务激增[N];中国化工报;2002年
7 高枫;邻苯二酚发展该提速了[N];中国化工报;2004年
8 王佩杰 丁庆和;连云港三吉利公司打赢反倾销官司[N];新华日报;2005年
9 晓梅;国产技术开发成功 扩大规模机不可失[N];中国化工报;2001年
10 吴学安;中国企业打赢反倾销保卫战[N];中国贸易报;2006年
相关博士学位论文 前2条
1 邹秀晶;邻苯二酚和乙(甲)醇气相单醚化合成邻羟基苯乙(甲)醚催化剂的研究[D];吉林大学;2009年
2 张强;外二醇双加氧酶(BphC)在邻苯二酚类物质传感器中的应用[D];大连理工大学;2012年
相关硕士学位论文 前10条
1 李丹;邻苯二酚乙胺与环境友好型溶剂的相互作用研究[D];河南大学;2015年
2 夏先伟;邻苯二酚的分离与提纯[D];郑州大学;2007年
3 陈威;发酵法产邻苯二酚菌株的筛选及固定化细胞的条件优化[D];广西大学;2007年
4 李江;运用生物技术转化苯甲酸钠合成邻苯二酚[D];北京化工大学;2003年
5 王朝进;1,2-环己二醇脱氢制备邻苯二酚的研究[D];郑州大学;2003年
6 高运福;对叔丁基邻苯二酚的合成研究[D];北京工商大学;2006年
7 谢英男;硅胶负载镍催化剂脱氢制备邻苯二酚的研究[D];郑州大学;2005年
8 程夕冉;产邻苯二酚菌株的筛选及相关基因的克隆[D];广西大学;2007年
9 张宗武;产邻苯二酚工程菌的构建及发酵条件的优化[D];广西大学;2006年
10 周炳江;邻苯二酚衍生物设计合成与硼酸识别研究[D];浙江师范大学;2011年
,本文编号:2434140
本文链接:https://www.wllwen.com/kejilunwen/huanjinggongchenglunwen/2434140.html