低温等离子体等技术降解水中氯苯酚的研究
[Abstract]:The waste water containing chlorophenol compounds is one of the most common and abundant wastewater, which has high biotoxicity and enrichment. It is difficult to degrade and accumulate easily in vivo, which poses a great threat to the safety of organisms. The traditional physical, chemical and biochemical methods are difficult to degrade chlorophenol compounds. Therefore, more and more attention has been paid to the advanced oxidation technology for the degradation of chlorophenol compounds. Low temperature plasma technology is a new advanced oxidation technology, which integrates ozone oxidation, high energy electron radiation and UV photolysis, and has both physical and chemical effects. In the process of dielectric barrier discharge (DBD), active particles such as hydroxyl radical (OH) are produced, which is the key technology of low temperature plasma oxidation. The technology has the advantages of fast reaction speed and complete degradation of organic matter, and has a wide application prospect. Firstly, 2,4,6-trichlorophenol was degraded by dielectric barrier discharge (DBD). The degradation of 2,4,6-trichlorophenol was determined by mass spectrometry and qualitative analysis of chloride ion. Dechlorination takes place to produce 2,4-dichlorophenol. Then, taking 2,4-dichlorophenol as the main degradation target, the effects of initial voltage, initial concentration and initial conductivity of pH, on the degradation efficiency were studied. The results show that when the initial concentration of 4-dichlorophenol is 50 mg/L, the initial voltage is 75 V, and the initial pH is 5.32, the removal rate of dichlorophenol can reach 76.13% when the initial concentration of 4-dichlorophenol is 50 min,2,4-. In order to further improve the removal rate of 2,4-dichlorophenol, the presence of catalyst (Fe2, H2O2, TiO2, 10% IxTiO2) increased the removal rate of 2,4-dichlorophenol. This is because the presence of the catalyst increases the amount of OH in the solution. In the presence of TiO2, the removal rate of 2,4-dichlorophenol can be increased to 83.68%, and with the introduction of 10%I-TiO2, the removal rate of 2,4-dichlorophenol can be increased to 90.59%. In order to verify the effect of OH, the free radical scavenger (tert-butanol, dipropanol) was added to the solution, and the removal rate of 2,4-dichlorophenol decreased with the increase of both concentrations. A part of 2,4-dichlorophenol is still degraded when the concentration of OH is very high, which indicates that DCP is the main oxidant, and other oxidation substances are still produced during the discharge process. 4-dichlorophenol is still degraded in the concentration of 2,4-dichlorophenol. The solution pH and TOC decrease with the increase of discharge time. Finally, 2,4,6-trichlorophenol and 2,4-dichlorophenol and their degradation products were characterized by UV-vis spectrophotometer and mass spectrometry scanning (MS). The structure of the degradation products and the degradation process of 2,4-dichlorophenol were analyzed. The experimental results show that the low temperature plasma can effectively degrade 2,4,6-trichlorophenol and 2,4-dichlorophenol and convert them into other intermediate products. This study provides some theoretical guidance for the practical application of low temperature plasma technology in chlorophenol wastewater treatment.
【学位授予单位】:山东大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:X703
【相似文献】
相关期刊论文 前10条
1 何帆;杜芳权;郭韵;;2,6-二氯苯酚的合成与应用概述[J];科技资讯;2013年07期
2 孙昌俊;陈再成;王飙;刘风尧;;选择性氯化法合成2,4-二氯苯酚[J];河南化工;1990年11期
3 孙昌俊;陈再成;王飙;刘风尧;;选择性氯化法合成2,4——二氯苯酚[J];河南化工;1990年12期
4 赵美法,王峰,徐华,徐炳才;加强2,4-二氯苯酚开发力度——获取最佳经济效益[J];精细与专用化学品;1998年23期
5 蔡春,吕春绪,苗丽;2,5-二氯苯酚的合成新方法[J];化学试剂;2000年05期
6 冯坚;;2,4-二氯苯酚[J];江苏农药;2000年04期
7 李从宝;;2,4-二氯苯酚在农药生产中的应用[J];化工文摘;2002年04期
8 周文军,杨瑞强,姜梅,展惠英,陈慧,刘国光;表面活性剂对2,4-二氯苯酚在黄土中吸附行为的影响[J];中国环境科学;2002年04期
9 江镇海;2,4-二氯苯酚在农药中的市场看好[J];化工生产与技术;2002年05期
10 姜梅,展惠英,袁建梅,陈慧;2,4-二氯苯酚在黄土中的吸附—解吸行为研究[J];安全与环境学报;2003年04期
相关会议论文 前10条
1 裔洪根;徐世清;丛海峰;戴璇颖;王玉军;曹伟;杨仙兰;;2,4—二氯苯酚对昆虫培养细胞的影响[A];中国蚕学会第四届青年学术研讨会会议论文集[C];2004年
2 王翠莲;陈亚中;李润妍;崔鹏;;声光催化降解2,4-二氯苯酚研究[A];第六届全国环境催化与环境材料学术会议论文集[C];2009年
3 刘华;杨洋;张晓昱;;白腐菌对二氯苯酚的降解研究[A];2012年鄂粤微生物学学术年会——湖北省暨武汉微生物学会成立六十年庆祝大会论文集[C];2012年
4 王翠莲;陈亚中;李润妍;崔鹏;;声光催化降解2,4-二氯苯酚研究(Ⅰ)反应条件的影响[A];中国化工学会2009年年会暨第三届全国石油和化工行业节能节水减排技术论坛会议论文集(上)[C];2009年
5 王强;马沛生;汤红梅;倪丽琴;;扩展Kalman滤波同时测定苯酚和2,4二氯苯酚[A];第十四届全国分子光谱学术会议论文集[C];2006年
6 潘雪峰;陈樱玉;;2,4-二氯苯酚的气相色谱分析[A];第三届广西青年学术年会论文集(自然科学篇)[C];2004年
7 石冬瑾;周尊隆;盛光遥;;小麦苗对水中2,4-二氯苯酚的根部吸收[A];第五届全国环境化学大会摘要集[C];2009年
8 丛海峰;裔洪根;徐世清;戴璇颖;陈息林;王玉军;杨仙兰;;环境激素2,4—二氯苯酚对家蚕生殖发育的影响[A];中国蚕学会第四届青年学术研讨会会议论文集[C];2004年
9 李艳;王琼娥;庄惠生;;Luminol-KMnO_4化学发光体系测定痕量的2,4-二氯苯酚[A];第三届全国环境化学学术大会论文集[C];2005年
10 周璇;庄惠生;;一种新型改性TiO_2催化膜的制备及其对2,4-二氯苯酚的光催化降解研究[A];第二届全国环境化学学术报告会论文集[C];2004年
相关重要报纸文章 前2条
1 赵美法;提高技术 开拓下游[N];中国化工报;2001年
2 彭城;上马三氯新要慎重[N];中国化工报;2001年
相关硕士学位论文 前10条
1 张羽;内分泌干扰物双酚A(BPA)和2,4-二氯苯酚对人工湿地运行效果的影响[D];辽宁大学;2015年
2 马晓龙;低温等离子体等技术降解水中氯苯酚的研究[D];山东大学;2015年
3 黎卫亮;2,4-二氯苯酚在黄土性土壤中的吸附及迁移转化研究[D];长安大学;2009年
4 梁庆;微生物电解转化水中2,4-二氯苯酚的研究[D];哈尔滨工业大学;2011年
5 边疆;分子印迹技术去除水中Fe(Ⅲ)和含氯有机污染物的研究[D];哈尔滨工业大学;2007年
6 裔洪根;2,4-二氯苯酚和壬基基酚对家蚕的环境激素作用研究[D];苏州大学;2004年
7 王子龙;微波强化零价铝去除水中2,4-二氯苯酚的研究[D];湖南大学;2012年
8 蒋亦文;二氯苯酚羧化的Kolbe-Schmitt反应机理研究[D];华东理工大学;2011年
9 牛涛;单线态氧与氯代酚作用机理的理论研究[D];江南大学;2008年
10 李碧;2,4-二氯苯酚对环境微生物—矿物交互作用的影响[D];合肥工业大学;2014年
,本文编号:2443646
本文链接:https://www.wllwen.com/kejilunwen/huanjinggongchenglunwen/2443646.html