Bioelectricity Generation Using Chlorella Regularis and Micr
发布时间:2021-01-05 20:01
本论文对微生物燃料电池处理来自小球藻(Chlorella regularis)及蓝藻(Microcystis aeruginosa)的生物质废弃物并同时产电进行了深入地研究。这些生物质废弃物是唯一的电子供体,并且富集的微藻生物质具有较好的可生物降解的蛋白质(46%)及碳水化合物(22%),很容易被铜绿假单胞菌降解,其BOD与COD的比值约为0.65。使用微藻生物质为填充液的生物燃料电池产电密度可达0.86 W/m2,库伦效率可达61.5%。通过增加生物质浓度的策略,其产电效率能够被进一步提升到1.07 W/m2,化学需氧量的去除率可达65.2%。经过比较,使用微藻生物质作为填充液的微生物燃料电池产电能力与使用商品醋酸钠作为填充液的微生物燃料电池产电能力比较接近。使用微藻生物质作为填充液的微生物燃料电池具有较高的电化学特质,这都归因于阳极生物质电解液的复杂组成成分。此微生物燃料电池具有多种阳极呼吸细菌组及丰富的微生物群落结构。此双室微生物燃料电池采用醋酸盐作为共基质以增加微生物电化学活性并降低MC-LR对阳极生物膜的毒性。与仅仅加入200 mg...
【文章来源】:东北师范大学吉林省 211工程院校 教育部直属院校
【文章页数】:56 页
【学位级别】:硕士
【文章目录】:
Abstract
摘要
Chapter ⅠGeneral introduction
1.1 Water eutrophication and microalgal biomass waste
1.1.1Water eutrophication
1.1.2 Algal biomass waste as a potential bioresources
1.1.3 Characteristics of Chlorella
1.1.4 Characteristics of Cyanobacterial cells
Definition
Morphology and reproduction
Ecology
Health risks
1.2 Microbial fuel cells(MFC)
1.2.1 Structures and operational principals
1.2.2 Anode Respiring Bacteria(ARB)
1.2.3 Extracellular electron transfer pathways
1.2.4 Normal electron donors in MFC
1.3 Scientific issues
1.4 Novelties
1.5 Aim
1.6 Research content
Chapter Ⅱ:Experimental and Methods
2.1 Strains
2.2 Cultivation conditions
2.3 Biomass pre-treatment
2.4 Algal biochemical composition analysis
2.5 MFC configuration,start-up and operation
2.5.1 MFC configuration
2.5.2 MFC start–up and operation
2.5.3 Electrochemical analysis
2.5.4 Calculations
2.6 Microbial characterization and community analysis
2.6.1 Microbial morphology
2.6.2 Transmission electron microscope(TEM)observation
2.7 Microbial community analysis
Chapter Ⅲ:Bioelectricity production from Chlorella biomass using MFC technology
3.1 Introduction
3.2 Results and discussion
3.2.1 Microalgae growth
3.2.2 Microalgal biomass composition
3.2.3 Power generation capability
3.2.4 Enhancing power generation strategy
3.2.5 Electrochemical characteristics
3.2.6 Microbial community
3.2.7 Microbial diversity
Chapter Ⅳ:Using cyanobacteria M.aeruginosa as electron donor in a microbial fuel cell:roles of acetate co-substrate in detoxifying toxins for stable and enhanced electricity generation
4.1 Introduction
4.2 Microcystins(MC-LR)degradation
4.3 Results and Discussion
4.3.1 Potentialities and challenges of M.aeruginosa as electron donor
4.3.2 Electricity generation performances from M.aeruginosa
4.3.2.1 Running stability:improved by acetate co-electron donor
4.3.2.2 Power production:promoted by acetate co-electron-donor
4.3.2.3 Anodic biofilm analysis:Cyclic Voltammetry
Chapter Ⅴ:Conclusion
Reference
Acknowledgement
Published Papers during Master’s Program
本文编号:2959215
【文章来源】:东北师范大学吉林省 211工程院校 教育部直属院校
【文章页数】:56 页
【学位级别】:硕士
【文章目录】:
Abstract
摘要
Chapter ⅠGeneral introduction
1.1 Water eutrophication and microalgal biomass waste
1.1.1Water eutrophication
1.1.2 Algal biomass waste as a potential bioresources
1.1.3 Characteristics of Chlorella
1.1.4 Characteristics of Cyanobacterial cells
Definition
Morphology and reproduction
Ecology
Health risks
1.2 Microbial fuel cells(MFC)
1.2.1 Structures and operational principals
1.2.2 Anode Respiring Bacteria(ARB)
1.2.3 Extracellular electron transfer pathways
1.2.4 Normal electron donors in MFC
1.3 Scientific issues
1.4 Novelties
1.5 Aim
1.6 Research content
Chapter Ⅱ:Experimental and Methods
2.1 Strains
2.2 Cultivation conditions
2.3 Biomass pre-treatment
2.4 Algal biochemical composition analysis
2.5 MFC configuration,start-up and operation
2.5.1 MFC configuration
2.5.2 MFC start–up and operation
2.5.3 Electrochemical analysis
2.5.4 Calculations
2.6 Microbial characterization and community analysis
2.6.1 Microbial morphology
2.6.2 Transmission electron microscope(TEM)observation
2.7 Microbial community analysis
Chapter Ⅲ:Bioelectricity production from Chlorella biomass using MFC technology
3.1 Introduction
3.2 Results and discussion
3.2.1 Microalgae growth
3.2.2 Microalgal biomass composition
3.2.3 Power generation capability
3.2.4 Enhancing power generation strategy
3.2.5 Electrochemical characteristics
3.2.6 Microbial community
3.2.7 Microbial diversity
Chapter Ⅳ:Using cyanobacteria M.aeruginosa as electron donor in a microbial fuel cell:roles of acetate co-substrate in detoxifying toxins for stable and enhanced electricity generation
4.1 Introduction
4.2 Microcystins(MC-LR)degradation
4.3 Results and Discussion
4.3.1 Potentialities and challenges of M.aeruginosa as electron donor
4.3.2 Electricity generation performances from M.aeruginosa
4.3.2.1 Running stability:improved by acetate co-electron donor
4.3.2.2 Power production:promoted by acetate co-electron-donor
4.3.2.3 Anodic biofilm analysis:Cyclic Voltammetry
Chapter Ⅴ:Conclusion
Reference
Acknowledgement
Published Papers during Master’s Program
本文编号:2959215
本文链接:https://www.wllwen.com/kejilunwen/huanjinggongchenglunwen/2959215.html