虾壳废弃物中蛋白与活性肽特性与综合利用研究
发布时间:2021-09-25 05:35
我国对虾(Fenneropenaeus chinensis)资源极为丰富,随着我国水产养殖业和海洋捕捞业的迅速发展,虾产量不断增加,仅对虾年产量就达30万吨。为了便于保鲜,大部分虾均以无头无壳的冷冻虾仁形式提供于国际市场,从而产生大量的虾头、虾壳废弃物。这些虾类废料如果不精深加工可造成水产资源的浪费,增加水产品的加工成本,并对生态环境造成污染。糖尿病已成为现代威胁人类的主要疾病之一,仅次于心血管系统疾病和肿瘤。由于化学药物的副作用,因此从传统中草药、食品资源以及从农产品副产物资源中寻找治疗糖尿病或辅助降血糖的药品和功能保健食品具有重要意义。有研究表明,虾壳里面的虾青素和壳聚糖具有一定的降血糖作用,但尚未有关于虾壳多肽降血糖活性及其相关产品研发的研究。此外,近年来对虾加工废弃物中回收营养、活性成分的研究一般都会用到大量的酸、碱及有机溶剂,这样不仅生产成本高,而且会造成二次污染。因此,充分利用虾加工废弃物日益受到国内外研究者重视。挤压加工技术是一种经济实用的新型加工技术,不仅应用于食品工业中,而且在饲料工业、油脂工业、酿造工业等领域中也有广泛的应用。有研究表明,不同处理方式可引起虾壳蛋白的...
【文章来源】:天津大学天津市 211工程院校 985工程院校 教育部直属院校
【文章页数】:97 页
【学位级别】:硕士
【文章目录】:
摘要
ABSTRACT
Chapter1 General introduction
1.1 Bioactive constituents from marine processing waste
1.1.1 Background
1.1.2 Proteins,peptides and amino acids from marine processing waste
1.1.3 Carbohydrates
1.1.4 Lipids and fatty acids
1.1.5 Antioxidants
1.1.6 Other constituents
1.2 Research progress of bioactive constituents of shrimp shell wastes(SSW)
1.2.1 Protein and peptide
1.2.2 Chitin and chitosan
1.2.3 Carotenoids
1.2.4 Fatty acids
1.2.5 The effects of processing treatment on the properties of SSW
1.3 Research progress of edible films
1.3.1 Edible films from proteins
1.3.2 Polysaccharides based coatings
1.3.3 Lipid based films
1.3.4 Composite films
1.3.5 Recent trends on the study of films
1.4 Significance of this study
Chapter2 Biocatalytic conversion of shrimp shell wastes:optimization of hydrolytic conditions and theα-amylase inhibitory activity of the peptide hydrolysates
2.1 Introduction
2.2 Experimental materials,reagents and instruments
2.3 Methods
2.3.1 Enzymatic hydrolysis
2.3.2 The response surface methodology
2.3.3 Determination ofα-amylase inhibitory activities of shrimp shell wastes hydrolysates(SSWH)
2.3.4 Determination of antioxidant activities of SSWH
2.3.5 Amino acids compositional analysis of SSWH
2.3.6 Molecular weight distribution
2.3.7 Statistical analysis
2.4 Results and discussion
2.4.1 Optimization of the types of enzymes for hydrolysis of SSWH
2.4.2 Effect of hydrolysis pH on the α-amylase inhibitory activity of SSWH
2.4.3 Effect of hydrolysis time on theα-amylase inhibitory activity of SSWH
2.4.4 Effect of liquid-solid ratio on theα-amylase inhibitory activity of SSWH
2.4.5 Effect of enzyme concentration on theα-amylase inhibitory activity of SSWH
2.4.6 Effect of temperature on theα-amylase inhibitory activity of SSWH
2.4.7 The optimization of enzyme hydrolysis by response surface method
2.4.8 Antioxidant activities of SSWH obtained under the optimum conditions
2.4.9 The amino acids composition of SSWH obtained under the optimum conditions
2.4.10 Molecular weight distribution of SSWH obtained under the optimum conditions
2.5 Conclusion
Chapter3 Effect of extrusion on physicochemical properties,functional properties and antioxidant activities of shrimp shell wastes protein
3.1 Introduction
3.2 Experimental materials,reagents and instruments
3.3 Methods
3.3.1 Extrusion process
3.3.2 Preparation of SSWP
3.3.3 Amino acids composition of SSWP
3.3.4 Morphological analysis of SSWP
3.3.5 Thermal properties of SSWP
3.3.6 Circular dichroism spectroscopy (CD) of SSWP
3.3.7 UV-vis spectroscopy of SSWP
3.3.8.1 Protein solubility of SSWP
3.3.9 Antioxidant activities of SSWP in vitro
3.3.10 Statistical analysis
3.4 Results and discussion
3.4.1 Effects of extrusion treatment on yields of SSWP
3.4.2 Amino acid composition of SSWP
3.4.3 Scanning electron microscopy of SSWP
3.4.4 Thermal properties of SSWP
3.4.5 Circular dichroism spectroscopy of SSWP
3.4.6 The UV spectra of SSWP
3.4.7 Functional properties of SSWP
3.4.8 Antioxidant activity of SSWP
3.4.9 Principal component analysis
3.5 Conclusion
Chapter4 Physicochemical and antioxidant properties of shrimp shell waste protein-based films incorporated with different ethanol extracts for active packaging
4.1 Introduction
4.2 Experimental materials,reagents and instruments
4.3 Methods
4.3.1 Preparation of oolong tea extracts(OTE),corn silk extracts(CSE)and black soybean seed coat extract(BSSCE)
4.3.2 Extraction of SSWP
4.3.3 Film preparation
4.3.4 Characterization of SSWP-C-X films
4.3.5 Statistical analysis
4.4 Results and discussion
4.4.1 Film preparation and film thickness of SSWP-C-X films
4.4.2 Color of SSWP-C-X films
4.4.3 Light transmission and film transparency of SSWP-C-X films
4.4.4 Thermal properties of SSWP-C-X films
4.4.5 Microstructure of SSWP-C-X films
4.4.6 Antioxidant activity of SSWP-C-X films
4.5 Conclusion
Chapter5 Conclusions and prospects
References
Achievements
Acknowledgments
本文编号:3409194
【文章来源】:天津大学天津市 211工程院校 985工程院校 教育部直属院校
【文章页数】:97 页
【学位级别】:硕士
【文章目录】:
摘要
ABSTRACT
Chapter1 General introduction
1.1 Bioactive constituents from marine processing waste
1.1.1 Background
1.1.2 Proteins,peptides and amino acids from marine processing waste
1.1.3 Carbohydrates
1.1.4 Lipids and fatty acids
1.1.5 Antioxidants
1.1.6 Other constituents
1.2 Research progress of bioactive constituents of shrimp shell wastes(SSW)
1.2.1 Protein and peptide
1.2.2 Chitin and chitosan
1.2.3 Carotenoids
1.2.4 Fatty acids
1.2.5 The effects of processing treatment on the properties of SSW
1.3 Research progress of edible films
1.3.1 Edible films from proteins
1.3.2 Polysaccharides based coatings
1.3.3 Lipid based films
1.3.4 Composite films
1.3.5 Recent trends on the study of films
1.4 Significance of this study
Chapter2 Biocatalytic conversion of shrimp shell wastes:optimization of hydrolytic conditions and theα-amylase inhibitory activity of the peptide hydrolysates
2.1 Introduction
2.2 Experimental materials,reagents and instruments
2.3 Methods
2.3.1 Enzymatic hydrolysis
2.3.2 The response surface methodology
2.3.3 Determination ofα-amylase inhibitory activities of shrimp shell wastes hydrolysates(SSWH)
2.3.4 Determination of antioxidant activities of SSWH
2.3.5 Amino acids compositional analysis of SSWH
2.3.6 Molecular weight distribution
2.3.7 Statistical analysis
2.4 Results and discussion
2.4.1 Optimization of the types of enzymes for hydrolysis of SSWH
2.4.2 Effect of hydrolysis pH on the α-amylase inhibitory activity of SSWH
2.4.3 Effect of hydrolysis time on theα-amylase inhibitory activity of SSWH
2.4.4 Effect of liquid-solid ratio on theα-amylase inhibitory activity of SSWH
2.4.5 Effect of enzyme concentration on theα-amylase inhibitory activity of SSWH
2.4.6 Effect of temperature on theα-amylase inhibitory activity of SSWH
2.4.7 The optimization of enzyme hydrolysis by response surface method
2.4.8 Antioxidant activities of SSWH obtained under the optimum conditions
2.4.9 The amino acids composition of SSWH obtained under the optimum conditions
2.4.10 Molecular weight distribution of SSWH obtained under the optimum conditions
2.5 Conclusion
Chapter3 Effect of extrusion on physicochemical properties,functional properties and antioxidant activities of shrimp shell wastes protein
3.1 Introduction
3.2 Experimental materials,reagents and instruments
3.3 Methods
3.3.1 Extrusion process
3.3.2 Preparation of SSWP
3.3.3 Amino acids composition of SSWP
3.3.4 Morphological analysis of SSWP
3.3.5 Thermal properties of SSWP
3.3.6 Circular dichroism spectroscopy (CD) of SSWP
3.3.7 UV-vis spectroscopy of SSWP
3.3.8.1 Protein solubility of SSWP
3.3.9 Antioxidant activities of SSWP in vitro
3.3.10 Statistical analysis
3.4 Results and discussion
3.4.1 Effects of extrusion treatment on yields of SSWP
3.4.2 Amino acid composition of SSWP
3.4.3 Scanning electron microscopy of SSWP
3.4.4 Thermal properties of SSWP
3.4.5 Circular dichroism spectroscopy of SSWP
3.4.6 The UV spectra of SSWP
3.4.7 Functional properties of SSWP
3.4.8 Antioxidant activity of SSWP
3.4.9 Principal component analysis
3.5 Conclusion
Chapter4 Physicochemical and antioxidant properties of shrimp shell waste protein-based films incorporated with different ethanol extracts for active packaging
4.1 Introduction
4.2 Experimental materials,reagents and instruments
4.3 Methods
4.3.1 Preparation of oolong tea extracts(OTE),corn silk extracts(CSE)and black soybean seed coat extract(BSSCE)
4.3.2 Extraction of SSWP
4.3.3 Film preparation
4.3.4 Characterization of SSWP-C-X films
4.3.5 Statistical analysis
4.4 Results and discussion
4.4.1 Film preparation and film thickness of SSWP-C-X films
4.4.2 Color of SSWP-C-X films
4.4.3 Light transmission and film transparency of SSWP-C-X films
4.4.4 Thermal properties of SSWP-C-X films
4.4.5 Microstructure of SSWP-C-X films
4.4.6 Antioxidant activity of SSWP-C-X films
4.5 Conclusion
Chapter5 Conclusions and prospects
References
Achievements
Acknowledgments
本文编号:3409194
本文链接:https://www.wllwen.com/kejilunwen/huanjinggongchenglunwen/3409194.html