氧化石墨烯负载铁基介孔纳米材料去除模拟废水中重金属(Sb、As)的研究
发布时间:2024-03-04 19:35
随着人类活动的加剧和工业的迅速发展,带来了一系列的环境问题,其中重金属污染成为人们关注的环境问题之一。重金属在环境中难以降解,可通过食物链富集危害人类健康。锑(Sb)属于重金属,Sb(Ⅲ)毒性高于Sb(Ⅴ),当吸入高含量的Sb会导致锑中毒,会出现呕吐、头痛、呼吸困难等症状,严重时可能会死亡。砷(As)作为一种类金属元素,因其进入生物体内的毒性与重金属的性质相似,常常将其归为重金属污染物范畴之内,且As(Ⅲ)毒性也远高于As(Ⅴ)。酸性矿山废水、城市污水、工业废水中富含大量重金属离子,直接排放到环境中将严重破坏生态环境,故急需采取各种手段治理废水中富含的重金属离子。为降低环境中的重金属含量,本研究采用四氧化三铁及高铁酸钴分别负载氧化石墨烯形成的有序介孔纳米材料用于去除模拟废水中的Sb(Ⅲ)和As(Ⅲ)。两种材料均采用化学沉积法成功合成,并通过X射线光电子能谱仪、扫描电镜、拉曼光谱仪、傅里叶变换红外光谱仪及磁力计、氮气吸附、原子力显微镜、透射电镜、X射线衍射仪、小角X射线衍射等仪器进行表征。此外,采用响应面结合人工智能技术(如人工神经网络、遗传算法、随机森林、粒子群优化算法)对去除过程Sb...
【文章页数】:103 页
【学位级别】:硕士
【文章目录】:
ABBREVIATIONS
摘要
Abstract
1. Introduction
1.1. Hazards of Sb and As
1.2. Development and application of OMMs
1.3. Preparation and characterization of graphene oxide-supported-metaloxide -based OMMs
1.3.1. Preparation of graphene oxide-supported-metal oxide-based OMMs
1.3.2. Characterization techniques
1.4. Optimizing removal conditions
1.5. Analysis of equilibrium isotherms, adsorption kinetics andthermodynamics
1.5.1. Equilibrium Isotherms
1.5.2. Removal kinetics
1.5.3. Thermodynamics analysis
1.6. Application of graphene oxide-supported-metal oxide-based OMMsfor the removal of pollutants
1.7. Main objectives of the present study
2. Preparation of iron-based OMMs supported on GO
2.1. Experiment section
2.1.1. Experimental reagents and instruments
2.1.2. Synthesis of GO and Fe3O4/GO
2.1.3. Synthesis of CoFe2O4/GO
2.1.4. Batch experimental design
2.2. Results and discussion
2.2.1. Characterization of Fe3O4/GO nanocomposites
2.2.2. Characterization of CoFe2O4/GO nanocomposites
2.2.3. Summary
3. RSM modeling and optimization
3.1. Results and discussion
3.1.1. Modeling and optimization of Sb(Ⅲ) removal by Fe3O4/GO
3.1.2. Modeling and optimization of As(Ⅲ) removal by CoFe3O4/GO
3.2. Summary
4. Modeling and optimization using AI tools
4.1. Results and discussion
4.1.1. Modeling and optimization for removal of Sb(Ⅲ) by Fe3O4/GO
4.1.2. Modeling and optimization for removal of As(Ⅲ) by CoFe2O4/GO
4.2. Summary
5. Isotherm, thermodynamic and kinetic studies
5.1. Isotherm study
5.1.1. Isotherm study for removal of Sb(Ⅲ) by Fe3O4/GO
5.1.2. Isotherm study for the removal of As(Ⅲ) by CoFe2O4/GO
5.2. Kinetic study
5.2.1. Kinetic study for the removal of Sb(Ⅲ) by Fe3O4/GO
5.2.2. Kinetic study for the removal of As(Ⅲ) by CoFe2O4/GO
5.3. Thermodynamic analysis
5.3.1. Thermodynamic study for the removal of Sb(Ⅲ) by Fe3O4/GO
5.3.2. Thermodynamic study for the removal of As(Ⅲ) by CoFe2O4/GO
5.4. Factor importance analysis
5.4.1. Factorial importance analysis of Sb(Ⅲ) removal process
5.4.2. Factorial importance analysis of As(Ⅲ) removal process
5.5. Removal mechanism for Sb(Ⅲ) and As(Ⅲ)
5.5.1. Removal mechanism for the removal of Sb(Ⅲ) by Fe3O4/GO
5.5.2. Removal mechanism for the removal of As(Ⅲ) by CoFe2O4/GO
5.6. Summary
6. Conclusion
7. Prospects
References
致谢
附录
本文编号:3919084
【文章页数】:103 页
【学位级别】:硕士
【文章目录】:
ABBREVIATIONS
摘要
Abstract
1. Introduction
1.1. Hazards of Sb and As
1.2. Development and application of OMMs
1.3. Preparation and characterization of graphene oxide-supported-metaloxide -based OMMs
1.3.1. Preparation of graphene oxide-supported-metal oxide-based OMMs
1.3.2. Characterization techniques
1.4. Optimizing removal conditions
1.5. Analysis of equilibrium isotherms, adsorption kinetics andthermodynamics
1.5.1. Equilibrium Isotherms
1.5.2. Removal kinetics
1.5.3. Thermodynamics analysis
1.6. Application of graphene oxide-supported-metal oxide-based OMMsfor the removal of pollutants
1.7. Main objectives of the present study
2. Preparation of iron-based OMMs supported on GO
2.1. Experiment section
2.1.1. Experimental reagents and instruments
2.1.2. Synthesis of GO and Fe3O4/GO
2.1.3. Synthesis of CoFe2O4/GO
2.1.4. Batch experimental design
2.2. Results and discussion
2.2.1. Characterization of Fe3O4/GO nanocomposites
2.2.2. Characterization of CoFe2O4/GO nanocomposites
2.2.3. Summary
3. RSM modeling and optimization
3.1. Results and discussion
3.1.1. Modeling and optimization of Sb(Ⅲ) removal by Fe3O4/GO
3.1.2. Modeling and optimization of As(Ⅲ) removal by CoFe3O4/GO
3.2. Summary
4. Modeling and optimization using AI tools
4.1. Results and discussion
4.1.1. Modeling and optimization for removal of Sb(Ⅲ) by Fe3O4/GO
4.1.2. Modeling and optimization for removal of As(Ⅲ) by CoFe2O4/GO
4.2. Summary
5. Isotherm, thermodynamic and kinetic studies
5.1. Isotherm study
5.1.1. Isotherm study for removal of Sb(Ⅲ) by Fe3O4/GO
5.1.2. Isotherm study for the removal of As(Ⅲ) by CoFe2O4/GO
5.2. Kinetic study
5.2.1. Kinetic study for the removal of Sb(Ⅲ) by Fe3O4/GO
5.2.2. Kinetic study for the removal of As(Ⅲ) by CoFe2O4/GO
5.3. Thermodynamic analysis
5.3.1. Thermodynamic study for the removal of Sb(Ⅲ) by Fe3O4/GO
5.3.2. Thermodynamic study for the removal of As(Ⅲ) by CoFe2O4/GO
5.4. Factor importance analysis
5.4.1. Factorial importance analysis of Sb(Ⅲ) removal process
5.4.2. Factorial importance analysis of As(Ⅲ) removal process
5.5. Removal mechanism for Sb(Ⅲ) and As(Ⅲ)
5.5.1. Removal mechanism for the removal of Sb(Ⅲ) by Fe3O4/GO
5.5.2. Removal mechanism for the removal of As(Ⅲ) by CoFe2O4/GO
5.6. Summary
6. Conclusion
7. Prospects
References
致谢
附录
本文编号:3919084
本文链接:https://www.wllwen.com/kejilunwen/huanjinggongchenglunwen/3919084.html