过氧亚硝酸盐纳米发光探针的构建
[Abstract]:Active oxygen is common in nature and living organisms. It is a stealth killer that causes diseases and senescence in life bodies. In order to better understand the role of active oxygen in physiological and pathological processes, selective determination of reactive oxygen species is particularly important. In addition, its life is only 10 ms. in addition, and the reactive oxygen species may also be cascaded and the chemical behavior is complex. Therefore, the selective determination of active oxygen in the biological system is difficult. At present, the most rapid development is the fluorescence analysis method, mainly based on the change of fluorescence signal after the fluorophore oxidation reaction. It is difficult to recognize and react to a certain kind of reactive oxygen species when the oxidation of active oxygen is small. Compared with the fluorescence analysis method, the most significant advantage of the chemiluminescence analysis method is that the light source is not needed, thus the background interference can be avoided effectively. Based on the Chemiluminescence Behavior of the peroxisate system, a new type of chemical luminescence is developed. In this paper, the high selectivity and high sensitive determination of peroxy nitrite in living cells is achieved by static injection chemiluminescence analysis. In addition, a high stable fluorescent gold quantum dot for active oxygen is designed and synthesized, which is expected to solve the nano hair. The optical probe is easily destroyed by reactive oxygen oxidation and leads to the quenching of luminescence. The problem of sensitivity reduction is of guiding significance to the construction of a specific reactive oxygen luminescence probe. The main contents of this paper are as follows: (1) a new nano catalyst, montmorillonite, was developed to sensitize the ultra weak chemiluminescence of nitrite. The effect of Montmorillonite Nanoparticles on the chemiluminescence of peroxy nitrite system was investigated by mixing rice particles in water medium. The results showed that the montmorillonite nanoplates could significantly enhance the chemiluminescence of the peroxy nitrite system. The montmorillonite nanostructures were tested by transmission electron microscopy and atomic force microscopy. The morphology of the tablets was characterized, and the reaction intermediates and luminescent bodies were confirmed by the active oxygen capture agent, electron spin resonance and chemiluminescence spectrum. The mechanism of sensitizing chemiluminescence of montmorillonite nanoscale was speculated. Under alkaline conditions, the iron species in the montmorillonite nanostructure can catalyze the decomposition of hydrogen peroxide and produce hydroxyl free radicals. Based on the reaction of the peroxy nitrite to produce a single state oxygen, a strong chemiluminescence is produced when it returns to the three line state. (2) a chemiluminescence probe for selective determination of peroxy nitrite is constructed based on the Direct Chemiluminescence Behavior of the semiconductor quantum dots induced by reactive oxygen species. The solution produces both the oxidation free radical hydroxyl radical and the reductive free radical superoxide anion radical. The hydroxyl radical can have the ability to inject holes into the quantum dots, and the superoxide anion has the ability to inject electrons into the quantum dots. Finally, the chemiluminescence is produced by the electron transfer annihilation mechanism. In a series of reactive oxygen species, the superoxide anion can produce chemiluminescence. The probe is good selectivity for peroxy nitrite. The determination of peroxy nitrite with this probe is 0.46 ~ 46 mu M and the detection limit is 0.11 mu M (S/N=3). The practicability of the probe is examined by measuring the exogenous peroxy nitrite in living cells. The results are in agreement with the theoretical value. (3) based on the carbon point. A highly sensitive peroxy nitrite chemiluminescence probe was constructed by the surface state luminescence mechanism. The surface state luminescence of the carbon point was regulated by changing the proportion of citric acid and urea by microwave method. The surface functionalities of the carbon point were characterized by Fu Liye transform infrared spectroscopy and X- ray photoelectron spectroscopy. The study shows that the surface state luminescence of the carbon point is mainly derived from the C-O group on the surface. With the increase of C-O content, the chemiluminescence response of the peroxisome is gradually enhanced. The response mechanism of the carbon point to the peroxy nitrite is evaluated by cyclic voltammetry, and the peroxy nitrite is determined by the probe. The linear range of salt is 0.01 ~ 3 M and the detection limit is 5 nM (S/N=3). The probe shows good biocompatibility and low toxicity. It has been successfully applied to the determination of exogenous and endogenous peroxises in living cells. The use of the chemiluminescence probe for the determination of peroxy nitrite in living cells is simple, selective and highly sensitive. (4) a stable red fluorescent quantum dot was designed and synthesized by changing the structure of the surface ligand, and used as a fluorescent marker for high active oxygen and long time cell labeling imaging. The blue fluorescent gold quantum dots with the ligand of bovine serum protein were coupled with the red fluorescent quantum dot of the two hydrogen sulfide octanoic acid as the ligand of the two imide coupling. Together, the new gold quantum dots are formed. On the one hand, the red fluorescence of the gold quantum dots is enhanced by the fluorescence resonance energy transfer. On the other hand, the covalent connection between the bovine serum protein and the two hydrogen lipoic acid effectively reduces the spiral structure in the bovine serum protein molecules and forms a stable protective layer on the surface of the gold nucleus, allowing the gold quantum to be made. This strategy can be used to regulate the oxidation resistance of gold quantum dots to construct stable and specific ROS luminescent probes.
【学位授予单位】:北京化工大学
【学位级别】:博士
【学位授予年份】:2017
【分类号】:O657.3
【相似文献】
相关期刊论文 前10条
1 杨莉芹;过氧亚硝酸盐介导的氧化应激在神经变性疾病发病机制中的认识[J];中国临床神经科学;2002年02期
2 吕超,魏彦林,林金明;过氧亚硝酸盐的化学特性与化学发光反应[J];世界科技研究与发展;2004年04期
3 刘瑞春;鲁志炜;吴广星;;黄芪对过氧亚硝酸盐阴离子导致的血管反应性异常的保护作用[J];中国临床研究;2010年09期
4 陈愉,金惠铭;过氧亚硝酸盐在内皮细胞损伤中的作用[J];中国病理生理杂志;2000年05期
5 王宇朋;王萍;李敏;陈海平;王翠英;李虹伟;;外源性过氧亚硝酸盐对大鼠血管收缩功能的影响的研究[J];临床和实验医学杂志;2013年09期
6 王一伟;张新欣;薛芒;董晓丽;;碳量子点/硅酸铋纳米片复合光催化剂的构建及其光催化性能增强[J];大连工业大学学报;2018年03期
7 杜君俐;;化学发光光源及其应用[J];甘肃化工;1994年01期
8 张敏;;化学发光法在儿童生长激素缺乏症诊断中的应用[J];临床医药文献电子杂志;2016年43期
9 何英爱;姚叶林;刘见欢;何雪环;朱彩嫦;叶淑贞;;化学发光法定量检测术前四项传染性标志物的结果分析[J];中国医学创新;2017年21期
10 包杰;;用化学发光法和甲苯胺红不加热血清试验法诊断梅毒的准确性对比[J];当代医药论丛;2015年13期
相关会议论文 前10条
1 权琳;田珏;燕子;张苏丽;王可;刘慧荣;;衰老大鼠血管内皮舒张功能下降与iNOS升高的关系[A];中国病理生理学会第九届全国代表大会及学术会议论文摘要[C];2010年
2 滕旭;王志华;吕超;;阴离子表面活性剂插层水滑石-过氧亚硝酸盐化学发光新体系在分析中的应用研究[A];中国化学会第28届学术年会第9分会场摘要集[C];2012年
3 林金明;;化学发光柱后检测技术及其应用[A];第八届全国发光分析暨动力学分析学术研讨会论文集[C];2005年
4 韩鹤友;;化学发光振荡及其分析化学中的应用[A];第八届全国发光分析暨动力学分析学术研讨会论文集[C];2005年
5 张鑫智;;化学发光免疫定量应用及存在问题[A];第九届西北五省(区)检验医学学术会议论文汇编[C];2005年
6 刘平;;全自动化学发光荧光分析仪在兽药残留检测中的应用[A];2013现场检测仪器及技术研讨会大会报告及论文[C];2013年
7 赵云莎;黄均明;刘荣军;赵书林;;基于化学发光共振能量转移的毛细管电泳化学发光法同时测定5-羟色胺和5-羟基吲哚乙酸[A];全国生物医药色谱学术交流会(2010景德镇)论文集[C];2010年
8 刘清慧;吕九如;;双嘧达莫的分子印迹-后化学发光研究[A];第八届全国发光分析暨动力学分析学术研讨会论文集[C];2005年
9 周鑫;潘义;;微痕量硫化氢气体的硫化学发光气相色谱法研究[A];全国气体标准化技术委员会、全国半导体设备和材料标准化技术委员会气体分会、全国标准样品技术委员会气体标样工作组四届五次会议、全国气体标准化技术委员会分析分会一届五次联合会议论文集[C];2014年
10 李莉;卢昌咸;;高良姜素化学发光新体系的发光动力学性质研究[A];甘肃省化学会二十六届年会暨第八届中学化学教学经验交流会论文集[C];2009年
相关重要报纸文章 前10条
1 本报记者 王天鹅;化学发光:进口替代势不可挡[N];健康报;2017年
2 欧阳应;我国化学发光诊断试剂研究取得进展[N];医药导报;2004年
3 本报研究员 张献;化学发光体外诊断业步入高速发展期[N];上海证券报;2015年
4 记者 刘霞;科学家利用超薄沸石纳米片造出高效催化剂[N];科技日报;2012年
5 记者 曲照贵;天大首创零污染量子点合成工艺[N];中国化工报;2013年
6 记者 金朝力;量子点电视中国市场翻倍增长[N];北京商报;2017年
7 本报记者 崔爽;从量子点到量子环 改变的不只一个字[N];科技日报;2018年
8 本报记者 闵杰;再现“小阳春” 量子点电视好时光还有多少年?[N];中国电子报;2018年
9 李锋白;2018年量子点电视销售额预计突破110亿[N];中国工业报;2018年
10 本报记者 丁莹;产品升级技术焕新[N];中国质量报;2018年
相关博士学位论文 前10条
1 周文娟;过氧亚硝酸盐纳米发光探针的构建[D];北京化工大学;2017年
2 刘闻闻;过氧亚硝酸盐对耳蜗螺旋神经节细胞的损伤作用及机制研究[D];山东大学;2014年
3 申金山;基于人工神经网络的化学发光法及光度法在多组分同时测定中的应用研究[D];四川大学;2005年
4 韩素琴;化学发光及其与毛细管电泳联用技术的应用研究[D];西北大学;2005年
5 梁耀东;化学发光新体系、电化学发光新方法的研究及应用[D];西北大学;2006年
6 刘海燕;流动注射—化学发光法在药物分析及农药残留分析中的应用研究[D];华东师范大学;2006年
7 曹伟;药物和生物大分子的化学发光法研究[D];山东大学;2007年
8 姚寒春;化学发光及相关化学计量学方法的应用研究[D];西北大学;2007年
9 刘伟;化学发光微流动注射分析芯片的研究[D];西南大学;2007年
10 何艺桦;基于CCD的小型光谱分析仪器与化学发光新技术[D];四川大学;2007年
相关硕士学位论文 前10条
1 范哲妍;氧化石墨烯与石墨烯量子点在化学发光中的应用研究[D];山西师范大学;2017年
2 祝振童;新型低维碳材料的合成及其光学性质研究[D];兰州大学;2015年
3 叶梦阳;钒酸盐量子点/g-C_3N_4纳米片零维/二维异质结光催化材料的合成与催化机理研究[D];天津大学;2017年
4 李显明;均相酶促化学发光传感检测miRNA及氧化酶底物[D];成都理工大学;2017年
5 崔贝;硅量子点制备及化学发光基础研究[D];陕西师范大学;2014年
6 彭汝林;基于能量转移的化学发光信号放大分析体系构建及检测研究[D];湘潭大学;2017年
7 王秋瑾;荧光银纳米团簇在化学发光中的研究及应用[D];青岛科技大学;2011年
8 刘静;氟喹诺酮类抗生素化学发光多样性的研究[D];南昌大学;2018年
9 梁培培;硝基呋喃类代谢物的磁微粒化学发光快速检测技术研究[D];华中科技大学;2016年
10 王婷;Ce(Ⅳ)-罗丹明6G体系及碳点在化学发光分析中的应用[D];河北大学;2017年
,本文编号:2167345
本文链接:https://www.wllwen.com/kejilunwen/huaxue/2167345.html