基于高光谱技术的羊肉含水率测定方法研究
[Abstract]:According to the hygienic standard of mutton, moisture content is an important reference index to evaluate mutton quality. In this study, 108 mutton samples were collected in 400nm-1000mn band and 1000nm-2500mn band by hyperspectral imaging system, and moisture content of mutton was determined by drying method. By collecting sample hyperspectral, spectral pretreatment, extracting sensitive bands, screening moisture content to detect spectral characteristic parameters, a prediction model of moisture content based on hyperspectral was constructed, and the model was analyzed and evaluated. The main contents and results are as follows: 1. The light source angle adjusting device was designed, and the force condition of the device was checked by Solidworks. The 3D simulation of the motion track was carried out to verify that the device could adjust the illumination angle of the spectrometer light source. The sample hyperspectral information was collected and the original spectrum was pretreated by multiple scattering correction. The 400nm-1 OOOnm and 1000nm-2500nm spectral pretreatment algorithms were selected according to the PLSR model. The results show that the optimal preprocessing algorithms for 400nm-1000nm band and 1000nm-2500nm band are standard normal combination de-trend method and de-trend algorithm .3respectively. PLS regression weight method was used to analyze the data of spectral pretreatment. It was found that the sensitive wavelengths of 400nm-1000nm band and 1000nm-2500nm band were 405.6 nm ~ 516.5nm ~ (-1) ~ 563.7nm ~ (-1) ~ (615.9) mm ~ (-1) ~ (?) ~ 864.4nm ~ (-1) ~ (964.4) nm ~ (-1) ~ 1346nm ~ 1535nm ~ (1635nm) ~ (1635nm) ~ (1786) nmm ~ (-1) ~ (-1) nm ~ (-1) ~ (-1) nm. The partial least square method and stepwise multivariate linear regression method were used to establish the prediction models of mutton moisture content in the whole band and the characteristic band, respectively. The results show that the prediction effect of stepwise multivariate linear regression model is better than that of partial least square model. The correlation coefficient (Rp) of predictive set model is 0.8184 and 0.7984, the standard deviation SEP is 0.0581 and 0.0603, the correlation coefficient of verification set model is 0.8301 and 0.8231, and the standard deviation SEC is 0.0549 and 0.0587 respectively. Based on the hyperspectral technology, the method of moisture content measurement of mutton is studied in this paper, which avoids the shortcoming of the traditional method to destroy the sample, and provides a theoretical basis for the design and development of the portable mutton moisture content detector in the future.
【学位授予单位】:内蒙古农业大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:O657.3;TS251.53
【参考文献】
相关期刊论文 前10条
1 王昱陆;郭辉;韩长杰;张豪;赵晓伟;;近红外光谱技术在生鲜肉检测中的现状及展望[J];新疆农机化;2014年06期
2 陈志强;王磊;白由路;杨俐苹;卢艳丽;王贺;王志勇;;整个生育期玉米叶片SPAD高光谱预测模型研究[J];光谱学与光谱分析;2013年10期
3 吴斌;孙宝忠;孙晓明;牛蕾;任秋斌;李海鹏;张松山;;牛肉嫩度的色差值预测模型研究[J];食品科技;2011年01期
4 徐秋良;吴运香;张长兴;朱宽佑;刘永祥;陈玉林;;畜禽肉嫩度及其影响因素[J];家畜生态学报;2010年06期
5 徐炳成;马艳菲;林鹏超;吴树军;;病死肉、变质肉和注水肉的鉴别方法[J];畜牧与饲料科学;2010年10期
6 陈全胜;张燕华;万新民;蔡健荣;赵杰文;;基于高光谱成像技术的猪肉嫩度检测研究[J];光学学报;2010年09期
7 吴建虎;彭彦昆;江发潮;王伟;李永玉;高晓东;;牛肉嫩度的高光谱法检测技术[J];农业机械学报;2009年12期
8 夏晓平;李秉龙;;我国羊肉产品国际竞争力之分析[J];国际贸易问题;2009年08期
9 黄裕华;;大型重载高精度数控轧辊磨床的设计开发[J];精密制造与自动化;2009年02期
10 姬瑞勤;黄岚;刘莉;王忠义;;鲜肉水分近红外漫反射方法及实验研究[J];光谱学与光谱分析;2008年08期
相关博士学位论文 前1条
1 田潇瑜;基于光谱与图像分析的生鲜牛肉嫩度快速检测技术研究[D];中国农业大学;2014年
相关硕士学位论文 前5条
1 王辉;不同氮素水平下甜菜生长参数的高光谱监测研究[D];内蒙古农业大学;2015年
2 王家云;基于光谱图像信息融合技术的滩羊肉嫩度无损检测研究[D];宁夏大学;2015年
3 思振华;基于高光谱图像技术的羊肉表面污染及病变快速检测方法研究[D];宁夏大学;2014年
4 赵政;猪肉新鲜度光谱模型的建立及传递方法研究[D];华中农业大学;2013年
5 龚春全;磨床关键零部件三维参数化CAD系统研究与开发[D];湖南大学;2004年
,本文编号:2255975
本文链接:https://www.wllwen.com/kejilunwen/huaxue/2255975.html