油井土、废玻璃基多孔陶瓷的制备及性能研究
本文关键词: 多孔陶瓷 油井土 废玻璃 导热系数 出处:《湖北工业大学》2017年硕士论文 论文类型:学位论文
【摘要】:油井土和废玻璃为两种对环境造成较为严重污染的固体废弃物。利用油井土和废玻璃制备多孔陶瓷是一种有效地变废为宝的方法,并具有良好的经济效益。一方面可以有效地回收处理油井土和废玻璃,减轻它们对环境的污染压力,另一方面制备的多孔陶瓷材料具有很好的经济价值,可广泛应用在化工、建筑等领域,具有广阔的应用前景。本研究利用油井土、废玻璃作为主要原料,以碳酸钙、碳粉、淀粉等中的一种或几种为造孔剂,并添加硅酸钠为助熔剂,通过控制烧成温度制度,最终制备多孔陶瓷材料。本论文主要研究了不同的油井土与废玻璃的比例、不同的造孔剂和助熔剂添加量、不同烧结温度、不同保温时间,这些条件对样品结构及性能的影响。实验结果表明:本研究制备的多孔陶瓷实现了油井土与废玻璃的高利用率,其中油井土掺入量均为25 wt%以上。烧结温度为850°C,保温时间20 min时,样品各项性能较好,抗折强度为3.91~4.43 MPa,抗压强度为10.42~12.59 MPa,导热系数最低达到0.0722 W/(m·K),能够应用于墙体隔热保温材料。多孔陶瓷材料导热系数与其孔隙率成负相关的关系。造孔剂含量与油井土和废玻璃的比例固定,助熔剂硅酸钠掺入量增加,烧结过程坯体中高温熔体三维网络结构被打破,能够降低体系的软化温度,促进孔气孔的生长与长大,但过量的掺入量将导致烧结过程中坯体出现表面坍塌、孔隙分布不均等现象。造孔剂含量、助熔剂含量与油井土和废玻璃的比例固定,当烧结温度为850°C时,样品孔隙结构均匀,孔隙率达到最大,为52.38%,抗折强度也高达4.43 MPa。在750~850°C范围内,烧结温度的提高能够促进坯体的软化,易于造孔,孔隙率增加且孔隙尺寸增大,坯体烧结更为致密,力学强度增加;当烧结温度为850~1050°C时,气体易于从坯体内部溢出,表面出现塌陷现象,孔隙率降低至36.48%。造孔剂含量、助熔剂含量与油井土和废玻璃的比例固定,在0~20 min保温时间内,延长保温时间能够促进气孔的生成与长大,孔隙率最高达到51.40%;但当保温时间超过20 min时,气孔的形状难以控制,贯穿性的气孔增多,同时气体溢出坯体的现象出现,故而孔隙率逐渐减小;孔隙形状以及分布不均是导致样品力学性能降低的主要原因。
[Abstract]:Oil well soil and waste glass are two kinds of solid wastes which cause serious environmental pollution. The preparation of porous ceramics from oil well soil and waste glass is an effective way to turn waste into treasure. On the one hand, the oil well soil and waste glass can be recovered effectively to reduce the environmental pollution pressure. On the other hand, the porous ceramic materials prepared have good economic value and can be widely used in chemical industry. In this study, oil well soil, waste glass as the main raw material, calcium carbonate, carbon powder, starch and so on as one or several of the pore-making agent, and added sodium silicate as fluxing agent, By controlling the sintering temperature, the porous ceramic materials were prepared. In this paper, different ratio of oil well soil to waste glass, different amount of pore-making agent and flux, different sintering temperature, different holding time were studied. The effect of these conditions on the structure and properties of the samples. The experimental results show that the porous ceramics prepared in this study have achieved high utilization ratio of well soil and waste glass. When the sintering temperature is 850 掳C and the holding time is 20 min, the properties of the samples are better. The flexural strength is 3.91 卤4.43 MPa, the compressive strength is 10.42 卤12.59 MPa, and the thermal conductivity is the lowest 0.0722 WR 路KG, which can be used in wall insulation and insulation materials. The relationship between thermal conductivity and porosity of porous ceramic materials is negative correlation, and the content of pore-forming agent is negatively related to oil well soil. And the proportion of waste glass is fixed, With the increase of the flux sodium silicate, the three-dimensional network structure of the high temperature melt in the sintered body is broken, which can reduce the softening temperature of the system and promote the growth and growth of the pore hole. However, excessive addition will lead to surface collapse and uneven pore distribution during sintering. The proportion of pore-forming agent content, flux content, well soil and waste glass is fixed. When sintering temperature is 850 掳C, the pore structure of the sample is uniform. The maximum porosity is 52.38 and the flexural strength is up to 4.43 MPA. In the range of 750 ~ 850 掳C, the increase of sintering temperature can promote the softening of the billet, easy to make pore, increase the porosity and increase the pore size, the sintering of the billet is denser and the mechanical strength is increased. When the sintering temperature is 850 ~ 1050 掳C, the gas can easily overflow from the billet, the surface collapses and the porosity is reduced to 36.48. The ratio of the content of pore-forming agent and flux to well soil and waste glass is fixed, and the heat preservation time is 0 ~ 20 min. Prolonging heat preservation time can promote the formation and growth of pores, and the highest porosity is 51.40%, but when the holding time is more than 20 min, the shape of pores is difficult to control, the number of permeable pores increases, and the phenomenon of gas spillover appears. As a result, the porosity gradually decreases, and the porosity shape and uneven distribution are the main reasons for the decrease of the mechanical properties of the samples.
【学位授予单位】:湖北工业大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TQ174.7
【参考文献】
相关期刊论文 前10条
1 张伊骁;许晨阳;;牛骨转化双相磷酸钙生物陶瓷材料的制备[J];山东工业技术;2016年08期
2 孙进兴;刘培生;;多孔吸声陶瓷的研究进展[J];陶瓷学报;2015年04期
3 刘文超;李晓森;刘永民;张占民;;石油污染土壤修复技术应用现状[J];油田化学;2015年02期
4 张源源;王志强;刘宝龙;;以粉煤灰和碎玻璃为主要原料研制泡沫玻璃[J];大连工业大学学报;2014年02期
5 刘欣;李家科;程凯;;蛇纹石尾矿资源化制备发泡陶瓷的研究[J];陶瓷学报;2013年04期
6 涂欣;王晴;;硼硅酸盐泡沫玻璃复合材料的研制[J];新型建筑材料;2013年07期
7 姜晓波;;利用工业废渣制备泡沫玻璃的研究[J];科技传播;2013年14期
8 邓绍云;徐学义;邱清华;;我国石油污染土壤修复研究现状与展望[J];北方园艺;2012年14期
9 连汇汇;苑文仪;吴晓阳;李金惠;朱维耀;;利用废CRT屏玻璃为原料制备泡沫玻璃[J];环境工程学报;2012年01期
10 吕长智;;石油污染及其治理[J];科技传播;2010年13期
相关硕士学位论文 前5条
1 胡文涛;废玻璃再利用商业分析:一种新型绿色建材创业战略[D];广东外语外贸大学;2015年
2 古先文;利用废平板玻璃制备泡沫玻璃及其性能研究[D];陕西科技大学;2013年
3 汪越;夏热冬冷地区新型玻璃轻石外墙保温体系热桥传热分析[D];武汉理工大学;2012年
4 祝泉;电熔棕刚玉除尘粉制备泡沫玻璃的研究[D];武汉科技大学;2011年
5 颜峰;基于硼泥制备泡沫玻璃和泡沫玻璃锦砖的研究[D];大连理工大学;2008年
,本文编号:1551895
本文链接:https://www.wllwen.com/kejilunwen/huaxuehuagong/1551895.html