氧化铝中空纤维上ZIF-8膜的制备及气体分离性能研究
本文选题:ZIF-8膜 切入点:中空纤维管 出处:《浙江大学》2015年硕士论文 论文类型:学位论文
【摘要】:金属有机框架(Metal Organic Frameworks, MOFs)是一类由金属离子与有机配体形成的有机无机复合多孔材料,因其优异的比表面积以及光学特性等功能,近几年来一直都是研究的热点。类沸石咪唑框架(Zeolitic Imidazolate Frameworks,ZIFs)作为MOFs的一个重要子类,是由过渡金属(如Zn、In等)和含N的咪唑类有机物相互交联形成的多孔材料,其骨架为类似沸石分子筛的空间网状拓扑结构,且具有极大的比表面积、特定的孔道结构以及优良的热稳定性和化学稳定性,因而在膜材料研究领域具有非常广阔的应用前景。目前ZIFs膜的研究已经经历一段高速的发展期,关于ZIFs成膜的研究层出不穷,然而主要是集中在片状载体上成膜或者分散于有机物中形成的复合膜,需要借助复杂的载体改性或者添加粘结剂等手段,并且得到的膜层普遍较厚,气体的通量不高,膜层性能受到制约,同时片状载体不适合制作膜组件,也不利于ZIF-8膜的大规模工业化应用。针对以上问题,本论文选用高孔隙率、大比表面积以及适合于工业化放大的氧化铝中空纤维管作为载体,研究其表面制备ZIF-8膜的影响因素。以自制的氧化铝中空纤维管作为载体,采用简便的晶种浸涂法在载体表面涂覆晶种层,通过二次生长法制备得到ZIF-8膜。重点考察了晶种大小、合成时间、合成配方等因素对成膜的影响。实验结果表明,由于ZIF-8晶体溶解现象的存在,虽然纳米级晶体的晶种层分布均匀,但晶体外表面积大,在合成过程中晶体溶解速度快,不能很好地起到成核位点的作用,未能得到连续的ZIF-8膜;而对于微米级的晶体,虽然晶种层不及纳米晶体均匀,但是由于外表面积小,在合成过程中溶解速度慢,晶体能够很好地发挥成核位点的作用,在短短的2小时内就诱导形成了连续致密的膜层,膜层厚度仅为7μm, H2渗透速率高达6.07×10-6mol·Pa-1·s-1·m-2,而H2与N2的理想分离因子达到了10.52,远远超过其努森分离因子。在不同的合成时间下研究了纳米晶种以及微米晶种诱导成膜的生长规律,为晶体溶解现象的存在提供证据。对比了不同合成配方中晶体溶解现象的存在情况,证明了含有甲酸钠的合成液中均存在晶体溶解现象。首次采用载体热处理与合成液预晶化相结合的方法,通过原位生长在氧化铝中空纤维管上制备ZIF-8膜。其具体步骤是(1)将氧化铝中空纤维管载体置于150℃的烘箱中加热4.0 h以上;(2)配置摩尔组成为ZnCl2:meIm:HCOONa: CH30H=1:1.5:1:250的合成液,并置于100℃的烘箱中预晶化一定的时间;(3)使合成液冷却后,将热处理过的载体趁热插入预晶化过的合成液中;(4)将合成釜置于100℃烘箱中完成晶化。研究了不同预晶化时间、合成时间以及载体热处理对成膜的影响。结果表明:合成液预晶化1.5 h、合成时间为4.0 h的条件下,制备得到了膜层厚度为6μm的ZIF-8膜,气体透过性能测试结果表明H2的渗透率达到了1.38×10-5mol·Pa-1·s-1·m-2,H2/N2的理想分离因子为5.27,超过其努森分离因子。
[Abstract]:Metal organic frameworks (Metal, Organic Frameworks, MOFs) is a kind of organic inorganic composite porous materials by metal ions and organic ligand, because of its excellent surface area and optical properties and other functions, in recent years has always been a hot research. (Zeolitic Imidazolate zeolite imidazolate frameworks Frameworks, ZIFs) as a an important subclass of MOFs, is composed of transition metal (Zn, In) porous materials and N containing imidazole organic cross-linking to form, its skeleton space mesh topology is similar to zeolite, and has a very large surface area, specific pore structure and excellent thermal stability and chemical stability, so it has very broad application prospects in the research field of membrane materials. At present the research of ZIFs film has experienced a rapid development period, the research on ZIFs film is mainly concentrated however emerge in an endless stream, The composite film in the sheet carrier or dispersed in organic form, need to use complex carrier modification or addition of binder and other means, and the film is generally thick, gas flux is not high, the film performance is restricted, and the sheet carrier is not suitable for making membrane, large-scale industrial application is not for the ZIF-8 film. To solve the above problems, this paper adopts high porosity, large surface area and suitable for alumina hollow fiber on the industrial pipe as the carrier, to study the influencing factors on the preparation of ZIF-8 film on the surface of the alumina. With self-made hollow fiber tube as the carrier, using simple seed dipping coating on the surface of the carrier the seed layer, the two growth were prepared. The ZIF-8 film focuses on seed size, synthesis time, effect of synthetic formula and other factors on the film. The experimental results show that the ZIF-8 crystal The dissolution phenomenon, although the nano crystal seed layer of uniform distribution, but the crystal appearance of large area, in the process of synthesis of crystal dissolution speed, can play very well to the nucleation sites, failed to get a continuous ZIF-8 film; and for micron crystal, although less than the seed layer nano crystal uniform, but because of the appearance of a small area, in the synthesis process, slow dissolution rate, crystal can play well the role of nucleation sites, the film formed by continuous dense in just 2 hours, the film thickness is only 7 m, the permeation rate of H2 is 6.07 * 10-6mol Pa-1. S-1, m-2, and the ideal separation factor H2 and N2 reached 10.52, far more than the Knudsen separation factor under different synthesis. In the study of nanocrystalline and microcrystalline film induced the growth of crystal dissolution phenomenon exists for comparative evidence. The presence of crystal dissolution phenomena of different synthetic formula, proved that the crystal dissolution phenomena are synthetic solution containing sodium formate. Carrier method of heat treatment and pre crystallization combination of synthetic fluid used for the first time, the growth in ZIF-8 film was prepared by in situ alumina hollow fiber tube. The specific steps are (1) oven alumina hollow fiber carrier in 150 DEG C in heating above 4 h; (2) the molar composition of the synthesis solution configuration ZnCl2:meIm:HCOONa: CH30H=1:1.5:1:250, and in the time of 100 DEG C in an oven for a pre crystallization; (3) the synthesis liquid cooled, carrier will heat treated while hot insert pre crystallization synthesis liquid the; (4) the synthesis reactor is put into 100 DEG C oven complete crystallization was studied. Different pre crystallization time, reaction time and the influence of heat treatment on the carrier film. The results show that the synthetic liquid pre crystallization synthesis of 1.5 h. Time is 4 h under the conditions of preparation of the ZIF-8 film thickness is 6 m, gas permeability test results show that the penetration rate of H2 reached 1.38 * 10-5mol - Pa-1 - S-1 - m-2, ideal separation factor of H2/N2 is 5.27, more than the Knudsen separation factor.
【学位授予单位】:浙江大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:TQ051.893
【相似文献】
相关期刊论文 前10条
1 ;中空纤维淡化组件[J];浙江科技简报;1983年06期
2 陈雪英;;中空纤维在医学上的应用[J];国外纺织技术(化纤、染整、环境保护分册);1986年05期
3 李钟敏;粱汉东;;中空纤维在质谱和色谱中的应用[J];火炸药;1986年01期
4 ;传导红外光用的塑料中空纤维[J];特种合成纤维简报;1994年03期
5 ;中纺大研制成功“九孔高弹中空纤维”[J];广东化纤;1997年02期
6 衣卫京,肖红;中空纤维的技术现状和发展展望[J];合成纤维;2004年S1期
7 刘辅庭;;东丽有微孔的中空纤维[J];合成纤维;2006年01期
8 王薇;杜启云;;中空纤维复合膜[J];高分子通报;2007年05期
9 园丁;;中空纤维产业化示范工程进展顺利[J];污染防治技术;2009年01期
10 方大儒;张小珍;刘杏芹;刘卫;孟广耀;;中空纤维陶瓷膜的研制现状与应用前景[J];硅酸盐通报;2009年S1期
相关会议论文 前10条
1 李志强;孙艳慧;赵素英;;中空纤维复合膜的结构参数估算及膜中阻力分布的研究[A];第三届全国化学工程与生物化工年会论文摘要集(上)[C];2006年
2 张宇峰;王薇;孟建强;刘恩华;安树林;;聚酰胺/聚砜中空纤维复合膜及其应用研究[A];全国苦咸水淡化技术研讨会论文集[C];2013年
3 李佳;师彦平;;氧化物中空纤维微萃取管新型样品前处理材料的研究[A];西北地区第六届色谱学术报告会甘肃省第十一届色谱年会论文集[C];2010年
4 王铮;迟春亮;邹长生;;异型板纺制中空纤维反渗透膜[A];’2001全国工业用水与废水处理技术交流会论文集暨水处理技术汇编[C];2001年
5 杨座国;侯智德;;中空纤维陶瓷膜制备工艺研究[A];上海市化学化工学会2009年度学术年会论文集[C];2009年
6 吕晓龙;;新型复合中空纤维分离膜[A];复合材料:生命、环境与高技术——第十二届全国复合材料学术会议论文集[C];2002年
7 秦余春;李保安;;换热器用复合材料中空纤维的制备[A];第四届中国膜科学与技术报告会论文集[C];2010年
8 李先锋;盛英峰;吕晓龙;;熔纺聚偏氟乙烯中空纤维及其结构性能[A];第十届陈维稷优秀论文奖论文汇编[C];2007年
9 戴猷元;;中空纤维膜萃取的传质特性及其过程强化[A];中国膜科学与技术报告会论文集[C];2003年
10 武文娟;王湛;周,
本文编号:1628056
本文链接:https://www.wllwen.com/kejilunwen/huaxuehuagong/1628056.html