提高微电铸层与金属基底界面结合性能的机理与方法
本文选题:超声 切入点:微电铸技术 出处:《大连理工大学》2016年博士论文
【摘要】:随着微机电系统的发展,金属微器件越来越受到人们的关注。金属微器件的制作方法有多种,包括电火花加工技术、激光加工技术和微电铸技术等。其中,微电铸技术以其复制精度高、可批量化生产的优势,更适合于金属微器件的加工制作。在利用微电铸技术制作金属微器件的过程中存在着微电铸层与金属基底界面结合性能差的问题。微电铸层与金属基底结合不牢使得微电铸层容易从金属基底脱落,严重时会造成金属微器件的制作失败。此问题影响了金属微器件的质量从而成为制约微电铸技术发展的瓶颈问题之一。本文针对微电铸层与金属基底的界面结合性能开展研究。为了明晰微电铸层晶粒尺寸与界面结合能的定量关系,本文根据断裂能量平衡准则、表面张力模型和米德马半经验电子模型建立了晶粒尺寸与界面结合能关系的理论模型。模型表明,界面结合能随着晶粒尺寸的增大而增大,并逐渐趋于稳定。为了验证模型的正确性,设计了微电铸实验,利用不同的电流密度制备了不同晶粒尺寸的微电铸层。采用X Ray Diffraction (XRD)衍射法测量了微电铸层晶粒尺寸,利用划痕法表征了界面结合能。实验结果表明,随着微电铸层晶粒尺寸的增大界面结合能逐渐增大,并趋于稳定。实验结果验证了模型的正确性。该模型为合理选取小电流密度、超声电铸等适度增大晶粒尺寸,提高界面结合能的电铸工艺参数提供一定的理论依据。研究了电流密度对微电铸层与金属基底界面结合能的影响。在晶粒尺寸与界面结合能关系的理论模型的基础上,分析了电流密度对晶粒尺寸和界面结合能的影响。设计了不同电流密度的电铸实验,测量了微电铸层晶粒尺寸、压应力和真实接触表面积,利用划痕法表征了界面结合能。根据金属离子局部放电理论和阴极极化理论对小电流密度提高界面结合能的机理进行了分析:一方面,利用小电流密度进行电铸其阴极过电位较低,制备的微电铸层晶粒尺寸较大,根据晶粒尺寸与界面结合能关系的理论模型,适度增大晶粒尺寸能够提高界面结合能;另一方面,小电流密度增大了微电铸层真实接触表面积,提高了微电铸层与基底的机械嵌合作用,改善了界面结合能。小电流密度电铸法可以有效提高界面结合能。研究了超声电铸法对微电铸层与金属基底界面结合能的影响。设计了超声电铸实验,研究了超声场对电铸反应过程的影响,利用极化法研究了超声条件下的阴极极化特性,利用交流阻抗法研究了超声条件下的电铸反应速率。实验结果表明,超声条件下的微电铸层压应力较小,晶粒尺寸与真实接触表面积较大。界面结合能首先随着超声功率的增大而增大,在超声功率为200W时最高,随后略有减小。界面结合能在超声频率为40kHz时较高,随着超声频率的增大逐渐减小。本文根据晶粒尺寸与界面结合能关系的理论模型,探讨了超声场提高界面结合能的机理,即:在电铸过程中施加超声场能够减小阴极过电位,适度增大微电铸层晶粒尺寸从而提高界面结合能。另一方面超声场增大了微电铸层的真实接触表面积,提高了微电铸层与基底的机械嵌合作用进而改善了界面结合能。在电铸过程中采用功率为200W、频率为40kHz的超声进行电铸提高界面结合能的效果较好。提出了超声复合电铸提高界面结合能的新方法。首先探讨了化学腐蚀法对界面结合能的影响。设计了化学腐蚀电铸实验,实验结果表明,化学腐蚀法能够提高基底表面粗糙度Ra,增大微电铸层的真实接触表面积,从而提高界面结合能。在化学腐蚀法、小电流密度电铸法与超声电铸法的研究基础上,以晶粒尺寸与界面结合能关系的理论模型为指导,提出了超声复合电铸提高界面结合能的新方法,并通过实验加以验证。复合电铸实验结果表明,相对于普通电铸法,超声复合电铸法使得界面结合能提高了134%。为了验证超声复合电铸法提高金属微器件界面结合性能的效果,利用超声复合电铸法制备了金属微柱阵列结构,并表征了金属微柱阵列结构的界面结合性能。实验结果表明,超声复合电铸法提高了金属微柱阵列结构的界面结合性能。本文研究工作对提高金属微器件的界面结合性能具有一定的借鉴意义。
[Abstract]:With the development of MEMS, micro metal devices have attracted more and more attention. There are many methods to fabricate metal micro devices, including EDM, laser processing technology and micro electroforming technology. The micro electroforming technology with its replication accuracy, mass production advantage, more suitable for processing fabrication of metal micro devices. Using micro electroforming technology in the production process of metal micro devices exist in the micro electroforming layer and the metal substrate interface. The problem of poor performance of micro electroforming layer and the metal substrate binding is not strong so that the micro electroforming layer from the metal substrate is easy to fall off, can cause severe production of metal micro devices this failure. The problems affected the quality of metal micro devices to become one of the bottleneck problems of micro electroforming technology development constraints. According to the interface of micro electroforming layer and metal substrate binding properties is studied. In order to clarify the micro Combined with the quantitative relationship between energy size and interfacial electroformed layer grain, according to the energy balance criterion of fracture, surface tension model and semi empirical model of midmar electronic grain size and interface bonding relationship. Theoretical model can model show that the interfacial energy increases with the increase of the grain size, and gradually stabilized in order to correct. To verify the model, the design of micro electroforming experiments, preparation of micro electroforming layer with different grain size with different current density. Using X Ray Diffraction (XRD) measurement of the micro electroforming layer of grain size, the scratch was used to characterize the interfacial energy. The experimental results show that with the increase of grain size of micro electroforming layer the interface binding energy increases gradually, and tends to be stable. The experimental results verify the correctness of the model. The model is a reasonable selection of small current density, ultrasonic electroforming moderate increase of grain size Inch, improve to provide a theoretical basis for combining the electroforming process parameters of current density interface. The binding energy of the micro electroforming layer and the metal substrate interface. The grain size and interface based on the theoretical model of relationship analysis, the current density with the effect of grain size and interface design. The electroforming experiments of different current density, micro electroforming layer grain size measurement, compressive stress and the real contact area and the use of scratch was used to characterize the interfacial energy of metal ions. According to partial discharge theory and theory to improve the cathodic polarization was analyzed with energy mechanism of the interface for small current density: on the one hand, deposits the cathodic overpotential is low with a small current density, the preparation of micro electroforming layer with larger grain size, according to the theoretical model of the relationship between grain size and interfacial energy, moderate increase of grain size can To improve the interfacial energy; on the other hand, a small increase in current density of micro electroforming layer contact surface area, improve the mechanical interaction of micro electroforming layer and the substrate, improve the interfacial binding energy at low current density electroforming method can effectively improve the interfacial energy. Research on ultrasonic electroforming method combined with the effect of micro electroforming layer and metal substrate interface. The design of ultrasonic electroforming experiment, studied the effect of ultrasonic field on electroforming reaction process, the cathodic polarization characteristics under ultrasonic condition using polarization method, the reaction rate of electroforming under ultrasonic condition using impedance spectroscopy. The experimental results show that the micro electroforming laminate under ultrasonic condition stress small grain size and large surface area. The contact interface binding energy first increases with the increase of ultrasonic power, the ultrasonic power is 200W the highest, followed by a slight decrease. The interfacial energy The frequency of 40kHz is higher, with the increase of ultrasonic frequency decreases gradually. Based on the grain size and interfacial energy relation theory model of ultrasonic field, increase the binding energy mechanism of interface: ultrasonic field can reduce the cathodic potential in the electroforming process, micro electroforming layer moderately increasing grain size and to improve the interfacial energy. On the other hand, ultrasonic field increases the area of real contact surface micro electroforming layer, improves the mechanical interaction of micro electroforming layer and the substrate, thereby improving the interfacial energy. In the electroforming process using the power of 200W, frequency of 40kHz can improve the interface of ultrasonic electroforming is better is proposed. A new method of ultrasonic composite electroforming raising the interfacial energy. First discusses the chemical etching method can impact on the interface. The design of chemical corrosion experimental results show that the electroforming experiments, The chemical etching method can improve the surface roughness Ra, increase the area of real contact surface micro electroforming layer, thereby improving the interfacial energy. The chemical etching method, based on small current density electroforming method and ultrasonic electroforming method, theory model under the guidance of the grain size and interfacial energy relation theory, put forward a new method of ultrasonic composite electroforming raising the interfacial energy, and verified by experiments. The experimental results show that the composite electroforming, compared with conventional electroforming method, ultrasonic composite electroforming method makes the interface combination can improve the 134%. in order to verify the ultrasonic combined electrical casting method to improve the performance of the micro device with metal interface effect, metal micro column array structure were prepared by ultrasound composite electroforming method, and characterized by the performance of metal micro column array structure of the interface. The experimental results show that the ultrasonic composite electroforming method improve the metal micro column array structure field The research work of this paper has a certain reference for improving the interface bonding properties of metal microdevices.
【学位授予单位】:大连理工大学
【学位级别】:博士
【学位授予年份】:2016
【分类号】:TQ153.4
【相似文献】
相关期刊论文 前10条
1 于昕;刘德义;陈汝淑;刘世程;;钢/铜/钛扩散复合界面显微组织和力学性能[J];大连交通大学学报;2009年06期
2 张国定;陈荣;吴人洁;;碳/铝复合材料的冲击性能研究[J];复合材料学报;1987年03期
3 李凯夫;;木质复合材料界面力学的研究(二) 4界面力学的表征[J];国外林产工业文摘;2001年02期
4 常守威;杨宇龙;王平;石天宇;;硅对铜/铝复合界面化合物的影响[J];轻合金加工技术;2013年04期
5 顾明元,张国定,吴人洁;石墨纤维增强铝基复合材料的界面结合[J];自然科学进展;1997年06期
6 任凤章,刘平,翟健,董企铭,郑茂盛;剥离法测量钛基体和不锈钢基体镍膜的界面结合能[J];材料热处理学报;2005年01期
7 郭卫卫;王爱玲;朱利梅;刘永姜;;界面结合状态对晶须树脂基复合材料力学行为的影响[J];现代制造工程;2009年05期
8 张莉;申士杰;;纤维增强树脂基复合材料界面结合机理研究现状[J];纤维复合材料;2011年04期
9 陈建,潘复生,刘天模;Al/SiC界面结合机制的研究现状(续)[J];轻金属;2000年11期
10 陈建,潘复生,刘天模;Al/SiC界面结合机制的研究现状[J];轻金属;2000年09期
相关会议论文 前9条
1 周益春;蒋丽梅;郝红肖;肖良红;;韧性膜/韧性基底界面结合性能的表征[A];中国力学学会学术大会'2009论文摘要集[C];2009年
2 张兵;孙院军;王快社;王莎;;Cu/Mo/Cu轧制复合界面结合特性研究[A];第二届层压金属复合材料生产技术开发与应用学术研讨会文集[C];2010年
3 蒋丽梅;周益春;郝红肖;;鼓泡法表征韧性膜/刚性基底界面结合性能的数值模型[A];中国力学学会学术大会'2009论文摘要集[C];2009年
4 蒋丽梅;周益春;;鼓泡法对韧性膜/韧性基底界面结合性能的研究[A];庆祝中国力学学会成立50周年暨中国力学学会学术大会’2007论文摘要集(下)[C];2007年
5 郝红肖;周益春;蒋丽梅;肖良红;;鼓泡法表征韧性膜/刚性基底界面结合性能的理论模型[A];中国力学学会学术大会'2009论文摘要集[C];2009年
6 徐可为;;金属表面脆性涂层材料的大载荷圆锥压入法界面结合性能实验表征[A];中国力学学会学术大会'2009论文摘要集[C];2009年
7 许巍;王飞;卢天健;;聚酰亚胺基/铜薄膜复合结构界面损伤破坏的数值模拟研究[A];第十五届全国复合材料学术会议论文集(下册)[C];2008年
8 冯爱新;张永康;谢华锟;蔡兰;;激光划痕界面失效进程研究[A];2004年全国物理声学会议论文集[C];2004年
9 程景飞;周祖福;余剑英;;高强高韧GF/PP复合材料的研究[A];第十三届玻璃钢/复合材料学术年会论文集[C];1999年
相关博士学位论文 前5条
1 朱旺;屈曲法表征薄膜/韧性基底材料体系的界面结合性能[D];湘潭大学;2014年
2 徐光晨;AM60/A390液/固复合双金属材料的界面结合研究[D];合肥工业大学;2015年
3 王光磊;真空热轧复合界面夹杂物的生成演变机理与工艺控制研究[D];东北大学;2013年
4 檀财旺;镁/钢激光熔钎焊接特性及界面合金调控技术研究[D];哈尔滨工业大学;2014年
5 黄汝清;碳化钨/钢基表层复合材料基体组织改性及其界面连续性研究[D];昆明理工大学;2013年
相关硕士学位论文 前10条
1 罗克;废弃铝塑复合物界面解离作用研究[D];陕西科技大学;2015年
2 谭世亮;杯[4]芳烃光响应界面的设计构筑及其驱动水滴研究[D];华中师范大学;2015年
3 郭华锋;复合材料/镀层的界面颗粒强化机理与工艺[D];大连理工大学;2015年
4 雷小凤;血浆分离式血液透析机人机交互功能开发[D];重庆大学;2015年
5 傅思齐;基于有形交互界面的智能手部康复设备设计研究[D];浙江大学;2016年
6 马鹏飞;自媒体视域下交互界面设计中的情感化研究[D];河南大学;2015年
7 吴开阳;合金元素和界面相Al_4C_3对SiC/Al界面结合影响的第一性原理及实验研究[D];南昌航空大学;2016年
8 韦贺;WC_p/钢(铁)基复合材料微观界面形成机制及压缩性能的研究[D];昆明理工大学;2016年
9 崔巍;移动设备交互界面动态化视觉设计研究[D];齐齐哈尔大学;2016年
10 郝红肖;鼓包法表征弹塑性膜/基体系界面结合性能的理论模型[D];湘潭大学;2010年
,本文编号:1666971
本文链接:https://www.wllwen.com/kejilunwen/huaxuehuagong/1666971.html