当前位置:主页 > 科技论文 > 化学工程论文 >

液体原料微型流化床裂解反应分析仪研发与应用

发布时间:2018-05-17 11:01

  本文选题:气液反应动力学 + 液体进样装置 ; 参考:《山东大学》2015年硕士论文


【摘要】:气液反应机理的研究及反应动力学参数的求算是材料、环境、化工、化学等领域研究开发的基础。本文自主研发了高粘度液体原料快速进样系统,并将其同微型流化床气固反应一体机的结构和控制系统进行连接与匹配,形成适用于液体原料的微型流化床反应分析仪(MFBRA-L:Micro Fluidized Bed Reaction Analyzer for Liquid Reactants)。该分析仪可弥补在液体原料等温微分反应方面现有分析手段的不足,具有广泛的应用前景。本文将MFBRA-L的设计原理、研究现状及其技术要点进行了阐述。然后展示了MFBRA-L在液体原料热解、燃烧、催化裂解三种典型气液反应的应用特性。首先,为了测定设定温度下的液体原料反应机理,所设计的MFBRA-L主要包括气体供给系统、液体原料进样系统、流化床反应系统以及数据采集与分析系统四部分。通过液体原料进样系统将原料快速送入到流化床反应系统,在气体供给系统提供的流化气体的作用下,气体产物进入过程质谱,从而实现在线监测分析及数据采集。其中的液体原料进样系统主要采用气压缸带动注射泵实现液体原料的快速进样,整个过程可以实现自动化控制。其次,利用MFBRA-L研究了苯类焦油模化物苯、甲苯和二甲苯在氩气气氛中的热解反应动力学特性。研究结果表明:应用MFBRA-L测定的三种反应物在反应温度区间(650~850℃)的反应时间尺度均小于10s。苯、甲苯和二甲苯裂解反应生成H2或CH4的表观活化能均依次减小。对于三种不同的反应物,生成H2的表观活化能均大于生成CH4的表观活化能。测试的气体释放顺序与反应动力学参数证实了各气体生成难易程度存在差异。再次,应用MFBRA-L研究了甲苯在不同N2/02配比气氛下的燃烧动力学特性。研究结果表明:氧气浓度变化对甲苯的热解反应速率以及反应动力学参数具有较大影响。氧气浓度越高,反应生成H2、CH4和C02的表观活化能均越低;相同氧气浓度下,甲苯生成H2、CH4和CO2时的表观活化能均依次减小。说明氧气浓度的增高能够促进反应的进行,反应更加容易。最后,本文以苯酚为热解反应原料,以高纯氩气作为流化气体,在MFBRA-L上分别进行苯酚裂解反应和催化裂解反应,研究结果表明:催化剂白云石以及氧化钙能够明显影响苯酚的裂解反应,但是对不同产物的影响程度有所不同。其中催化剂对产物H2的影响最为明显,对C02的影响次之,对CO和CH4影响最小。在700℃时,相较于不使用催化剂,使用白云石和氧化钙分别能使H2的产量提高约80倍和20倍,能使总气体产量提高约4.9倍和1.6倍。苯酚裂解生成H2和CO的表观活化能平均值分别为73.94 kJ/mol和83.77 kJ/mol。白云石催化裂解苯酚生成H2和CO的表观活化能平均值分别为38.66 kJ/mol和47.37 kJ/mol,氧化钙催化裂解苯酚生成H2和CO的表观活化能平均值分别为44.26 kJ/mol和52.77 kJ/mol。催化剂白云石和氧化钙的使用能够明显降低苯酚裂解反应的活化能,加快反应速率,具有良好的催化效果。
[Abstract]:The research on the mechanism of gas-liquid reaction and the calculation of the kinetic parameters of the reaction are the basis for the research and development of materials, environment, chemical and chemical fields. This paper independently developed a rapid sampling system for high viscosity liquid materials, and connected it with the structure and control system of a micro fluidized bed gas solid reaction machine to form a liquid suitable for liquid. The micro fluidized bed reaction analyzer (MFBRA-L:Micro Fluidized Bed Reaction Analyzer for Liquid Reactants). The analyzer can make up for the shortcomings of the existing analytical means in the isothermal differential reaction of liquid materials, and has a wide application prospect. This paper expounds the design principle of MFBRA-L, the research status and technical points of this paper. The application characteristics of the three typical gas-liquid reactions of MFBRA-L in the pyrolysis, combustion and catalytic cracking of liquid materials are presented. First, in order to determine the reaction mechanism of liquid raw materials at set temperatures, the designed MFBRA-L mainly includes the gas supply system, the liquid feed system, the fluidized bed reaction system and the data acquisition and analysis system. The four part, through the liquid raw material feeding system, quickly sent the raw materials into the fluidized bed reaction system. Under the action of the fluidizing gas provided by the gas supply system, the gas products entered the process mass spectrometry, thus the on-line monitoring analysis and data collection were realized. The liquid raw material injection system mainly used the pressure cylinder to drive the injection pump to realize the liquid. Automatic control of the whole process can be achieved in the whole process. Secondly, the kinetic characteristics of the pyrolysis reaction of benzene, toluene and xylene in argon atmosphere are studied by MFBRA-L. The results show that the reaction time scale of the three reactants measured by MFBRA-L in the reaction temperature range (650~850 degrees C) The apparent activation energy of H2 or CH4, which is less than 10s. benzene, and toluene and xylene cracking reaction, decreases in turn. For the three different kinds of reactants, the apparent activation energy of the formation of H2 is greater than the apparent activation energy of the formation of CH4. The gas release sequence and the kinetic parameters of the test confirm the difference in the difficulty degree of each gas generation. The kinetic characteristics of Toluene Combustion in different N2/02 ratio atmosphere were studied by MFBRA-L. The results showed that the change of oxygen concentration had great influence on the pyrolysis rate and kinetic parameters of toluene. The higher the oxygen concentration, the reaction generated H2, the apparent activation energy of CH4 and C02 was lower, and the toluene was born under the same oxygen concentration. The apparent activation energy of H2, CH4 and CO2 decreased in turn. It shows that the increase of oxygen concentration can promote the reaction and the reaction is easier. Finally, the phenol is used as the raw material for the pyrolysis reaction and the high pure argon is used as the fluidizing gas. The reaction of the reaction and the catalytic cracking of the phenol pyrolysis is carried out on the MFBRA-L. The results show that the catalyst is used as a catalyst. Dolomite and calcium oxide can obviously affect the cracking reaction of phenol, but the influence on different products is different. The effect of catalyst on H2 is the most obvious, the effect on C02 is the second, and the smallest effect on CO and CH4. At 700 C, the use of dolomite and calcium oxide can make the production of H2, respectively, compared with the use of the dolomite and calcium oxide. The increase of total gas production by about 80 times and 20 times increases the total gas production by about 4.9 times and 1.6 times. The apparent activation energy of the apparent activation energy of H2 and CO by phenol cracking is 73.94 kJ/mol and 83.77 kJ/mol. in the catalytic cracking of phenol to produce H2 and CO, the average value of the activation energy is 38.66 kJ/mol and 47.37 kJ/mol, and the calcium oxide catalytic cracking phenol produces H2, respectively. The average value of apparent activation energy of CO and CO, respectively, is 44.26 kJ/mol and 52.77 kJ/mol. catalyst dolomite and calcium oxide can obviously reduce the activation energy of the phenol pyrolysis reaction, accelerate the reaction rate and have good catalytic effect.
【学位授予单位】:山东大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:TQ051.13

【相似文献】

相关期刊论文 前10条

1 邹仁捚;;烷烃裂解反应的化学热力学和动力学研究[J];石油化工;1979年01期

2 邹仁捚;;论裂解反应系统热力学和动力学因素的综合作用[J];河北工学院学报;1980年03期

3 杨吉坡,王佛松;不同催化体系聚乙炔的热裂解反应[J];高分子通讯;1985年06期

4 苏君雅,汤渭龙,李似欣;轻柴油裂解反应动力学模型[J];华东石油学院学报(自然科学版);1985年04期

5 娄强昆;张秉常;崔洪武;邹仁捚;;轻烃裂解反应的脉冲微型反应装置及其性能的研究[J];石油化工;1985年03期

6 苏君雅;汤渭龙;李似欣;;改进的轻柴油裂解反应模型[J];石油化工;1986年08期

7 徐海升;;乙烷裂解反应最佳工艺条件分析[J];石油化工;1988年09期

8 何秉伟;光合作用中水裂解反应的电化学本质[J];自然杂志;1991年06期

9 何大森,刘炳麟;用脉冲微反—断流色谱研究异丙苯裂解反应动力学[J];燃料化学学报;1983年04期

10 杨惠星,李文敏,裴子(目匀),钟文心,张丹,王骊;焦煤裂解反应研究[J];应用化学;1987年06期

相关会议论文 前6条

1 张其翼;魏微;陈玉;姜淑超;李象远;;碳氢燃料超临界裂解与亚临界裂解反应特性对比[A];中国化学会第29届学术年会摘要集——第41分会:燃料与燃烧化学[C];2014年

2 范杰;李钢;徐秀峰;;CF_4在Al_2O_3基吸附剂上的裂解反应[A];第十一届全国青年催化学术会议论文集(下)[C];2007年

3 孟祥海;徐春明;高金森;吴培;梁咏梅;;大庆常压渣油在CEP催化剂上的裂解反应规律[A];中国化工学会2003年石油化工学术年会论文集[C];2003年

4 许秀;;裂解反应实验装置计算机控制系统设计[A];全国第16届计算机科学与技术应用(CACIS)学术会议论文集[C];2004年

5 潘远江;;质谱中的质子和苄基迁移反应[A];中国化学会第29届学术年会摘要集——第03分会:分析可视化及交叉学科新方法[C];2014年

6 范杰;李钢;王玉莲;廖卫平;徐秀峰;;CF_4在MgO-Al_2O_3上的裂解反应[A];第五届全国环境催化与环境材料学术会议论文集[C];2007年

相关博士学位论文 前2条

1 张利军;裂解反应模型的建立与应用研究[D];北京化工大学;2011年

2 姜辉;维生素E及其中间体绿色化学研究[D];浙江大学;2006年

相关硕士学位论文 前6条

1 范鹏飞;液体原料微型流化床裂解反应分析仪研发与应用[D];山东大学;2015年

2 陈栋;电化学和生物条件下水裂解反应的理论计算模拟[D];复旦大学;2013年

3 方明星;裂解炉管内的裂解反应动力学的数值模拟[D];北京化工大学;2008年

4 谢芳菲;Ti、Sn和K改性的MCM-41中孔分子筛的合成、表征及其催化聚烯烃裂解反应研究[D];青岛科技大学;2007年

5 耿维;松香催化裂解制备生物液体燃料油的试验研究[D];南京林业大学;2010年

6 张姝玉;生物质锥式闪速裂解反应器建模与仿真研究[D];东北林业大学;2006年



本文编号:1901113

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/huaxuehuagong/1901113.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户eaf96***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com