新能源用微纳碳材料的研制
发布时间:2018-05-21 11:05
本文选题:纳米碳材料 + 氢气泡模板法 ; 参考:《东南大学》2017年硕士论文
【摘要】:纳米碳材料种类繁多,它们在形貌、结构、比表面积、活性官能团种类与数量等各方面各有特色。在新能源中,这些不同为对条件敏感的电化学反应创造了诸多可能。例如,在燃料电池的氧还原过程中及锂离子电池负极嵌脱锂反应中,新型碳纳米材料就扮演着尤为重要的角色。本研究尝试并制备出了对氧还原反应具有较高活性的新型三维枝晶状石墨烯碳材料。首先以氢气泡模板法制备出具有三维多孔的铜枝晶模板,再在此模板上通过物理气相沉积法气相沉积工艺沉积出石墨烯材料。通过优化铜模板沉积工艺和物理气相沉积法石墨烯沉积参数,最终制备出具有三维枝晶状形貌的石墨烯材料。该材料在氧还原反应中表现出显著的催化效果,氧还原起始电位达到-0.149 V(vs.Ag/Agcl),远比玻碳电极起始起始电位更正(-0.26V,vs.Ag/Agcl)。该种新型枝晶状石墨烯中存在的大量的曲面结构可能是其具有氧还原催化性能的原因。随后为进一步增加枝晶状石墨烯的催化活性位点,本研究采用氢气泡模板法制备出了三维多孔铜镍合金枝晶模板,并在此模板上通过物理气相法沉积枝晶状石墨烯。研究结果表明选取0.8M NiSO4+ 0.1M CuSO4 + 1M H2SO4溶液为沉积液,可通过氢气泡模板法沉积沉积出三维多孔枝晶状铜镍合金模板;在该模板上通过900℃物理气相沉积,可获得缺陷更多的枝晶状石墨烯,该石墨烯与铜枝晶模板上沉积的石墨烯相比,具有更高的氧还原催化活性。第三部分本研究探究不同纳米碳后处理工艺,尝试提升电解法制备出的纳米碳材料的电化学性能,以获得良好的锂离子电池综合性能。研究表明在400℃对电解获得的纳米碳球材料进行热处理,可以除去苯六甲酸杂质,提升电池容量。使用氢碘酸对纳米碳球进行还原,在还原时间为1h时,可打开部分纳米碳球,获得纳米碳片,提高电池的稳定性;对纳米碳进行硅掺杂则对电池性能无显著提高。而对纳米碳球进行包覆处理可以同时提高电池的容量和循环稳定性。
[Abstract]:There are many kinds of nano-carbon materials, they have their own characteristics in morphology, structure, specific surface area, type and number of active functional groups, etc. In new energy sources, these differences create many possibilities for condition-sensitive electrochemical reactions. For example, new carbon nanomaterials play an important role in the process of oxygen reduction in fuel cells and in the delithium-ion reaction of negative electrode of lithium-ion batteries. In this study, a new three-dimensional dendritic graphene carbon material with high activity for oxygen reduction was prepared. Firstly, copper dendrite template with three dimensional pores was prepared by hydrogen bubble template, and then graphene material was deposited on the template by physical vapor deposition. The graphene materials with three-dimensional dendritic morphology were prepared by optimizing the copper template deposition process and the physical vapor deposition method of graphene deposition parameters. The initial potential of oxygen reduction is -0.149 V / v 路Agr / Agclan, which is much higher than that of glassy carbon electrode (GCE). The existence of a large number of curved surfaces in this new dendritic graphene may be the reason for its catalytic properties of oxygen reduction. In order to further increase the catalytic activity sites of dendritic graphene, a three-dimensional porous copper-nickel alloy dendritic template was prepared by hydrogen bubble template, and the dendritic graphene was deposited on the template by physical vapor deposition. The results show that the three-dimensional porous dendritic Cu-Ni alloy template can be deposited by hydrogen bubble template with 0.8M NiSO4 0.1M CuSO4 1m H2SO4 solution as the deposition solution, and then deposited by physical vapor deposition at 900 鈩,
本文编号:1918942
本文链接:https://www.wllwen.com/kejilunwen/huaxuehuagong/1918942.html