火花放电和高能球磨组合工艺制备纳米硅颗粒的研究
本文选题:纳米硅颗粒 + 火花放电 ; 参考:《南京航空航天大学》2017年硕士论文
【摘要】:纳米硅材料在陶瓷、光学、微电子等领域有着广泛应用。纳米硅颗粒的制备包括化学和物理两种方法。化学制备方法(如化学气相沉积法等)普遍存在反应条件苛刻、工艺路线复杂、可控性差和产量低的缺点,而物理方法(如球磨法等)尚不能满足高效、低成本制备纳米硅的应用需求。本论文从半导体复合加工手段入手,以重掺杂P型单晶硅为原料,采用火花放电法预制备微米/亚微米硅材料,然后采用高能球磨法制备纳米硅材料,实现了一种高质高效、自上而下的纳米硅制备技术路线,并在此基础上,开展了相关电化学性能测试,具体过程如下:1、以重掺杂P型单晶硅(0.01Ω·cm)为工件,铜管为工具电极,采用火花放电法制备出微米/亚微米硅颗粒,粒径(D50)在1.45μm左右;进而通过高能球磨法,选用0.1mm氧化锆磨球,制备出粒径(D50)在88nm左右的纳米硅颗粒,尺寸分布均匀。2、为验证纳米化对硅材料在脱/嵌锂过程中体积效应的改善,针对上述制备的微米/亚微米和纳米硅材料,开展了电化学性能测试,结果如下:微米/亚微米硅材料首次放电比容量较高,超过4000 mAh/g,但经过65次循环,电极的放电比容量仅剩300 mAh/g,容量保持率不足8%;纳米硅材料首次放电比容量为2717.3 mAh/g,经过65次循环,电极的放电比容量仍保持有1458.6mAh/g,容量保持率高达66.84%。
[Abstract]:Nano-silicon materials are widely used in ceramics, optics, microelectronics and other fields. The preparation of nanocrystalline silicon particles includes chemical and physical methods. Chemical preparation methods (such as chemical vapor deposition) generally have the disadvantages of harsh reaction conditions, complex process routes, poor controllability and low yield, while physical methods (such as ball milling) can not meet the high efficiency. Application requirements for low cost preparation of nano-silicon. In this paper, starting with the semiconductor composite processing method, the micron / submicron silicon was prepared by spark discharge method with heavily doped P type monocrystalline silicon as raw material, and then nano-silicon material was prepared by high energy ball milling method, which realized a high quality and high efficiency. On the basis of the top-down preparation technology of nanocrystalline silicon, relevant electrochemical performance tests have been carried out. The specific process is as follows: 1, with heavily doped P-type monocrystalline silicon (0.01 惟 cm) as workpiece and copper tube as tool electrode. The micrometer / submicron silicon particles were prepared by spark discharge method, the diameter of which was about 1.45 渭 m, and then, by high-energy ball milling, 0.1mm zirconia grinding ball was used to prepare nano-silicon particles about 88nm. In order to verify the improvement of volume effect of nanocrystalline silicon in the process of lithium removal and intercalation, electrochemical performance tests were carried out for the micrometer / submicron and nanometer silicon materials. The results are as follows: the first discharge specific capacity of micron / submicron silicon is high, exceeding 4000 mAh/ g, but after 65 cycles, The discharge specific capacity of the electrode is only 300mAh/ g and the capacity retention rate is less than 80.The discharge specific capacity of the nanocrystalline silicon material is 2717.3 mAh/ g for the first time. After 65 cycles, the discharge specific capacity of the electrode remains at 1458.6 mAhs / g, and the capacity retention rate is as high as 66.84g.
【学位授予单位】:南京航空航天大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TQ127.2;TB383.1
【参考文献】
相关期刊论文 前10条
1 陈兰;杨贝松;刘子莲;蔡颖颖;;纳米材料的表征与测试[J];材料导报;2016年S1期
2 张伟;汪炜;;电火花放电法制备纳米铜颗粒[J];电加工与模具;2015年03期
3 谭和平;侯晓妮;孙登峰;叶善蓉;;纳米材料的表征与测试方法[J];中国测试;2013年01期
4 彭佳悦;祖晨曦;李泓;;锂电池基础科学问题(Ⅰ)——化学储能电池理论能量密度的估算[J];储能科学与技术;2013年01期
5 叶剑;张海燕;陈易明;胡丽;冉启燕;杜磊;;球磨辅助氧化还原法制备石墨烯[J];无机化学学报;2012年12期
6 孙玉利;左敦稳;祝晓亮;朱永伟;黎向锋;;高能球磨法对水相介质中微米α-Al_2O_3分散性能的影响[J];功能材料;2013年01期
7 武明昊;陈剑;王崇;衣宝廉;;锂离子电池负极材料的研究进展[J];电池;2011年04期
8 陶占良;王洪波;陈军;;锂离子电池负极硅基材料[J];化学进展;2011年Z1期
9 戴乐阳;陈清林;林少芬;欧阳柳章;;高能球磨中促进粉体细化的主要因素研究[J];材料导报;2009年22期
10 王海波;孙青竹;;表面活性剂在纳米材料制备中的应用[J];佳木斯大学学报(自然科学版);2007年04期
相关博士学位论文 前2条
1 陶涛;球磨法用于制备纳米功能材料[D];中南大学;2011年
2 王灿明;等离子喷涂耐磨涂层技术在大型薄壁零件上的应用研究[D];山东科技大学;2010年
相关硕士学位论文 前3条
1 周述;利用冷等离子体制备硅和硼纳米颗粒[D];浙江大学;2013年
2 于金伟;高性能纳米陶瓷刀具及切削性能研究[D];山东大学;2008年
3 解全东;高能球磨制备碳化物及纳米复合材料的研究[D];浙江大学;2003年
,本文编号:1959315
本文链接:https://www.wllwen.com/kejilunwen/huaxuehuagong/1959315.html