当前位置:主页 > 科技论文 > 化学工程论文 >

特殊精馏分离碳酸二甲酯—甲醇共沸物的工艺优化与控制策略

发布时间:2018-06-18 09:41

  本文选题:碳酸二甲酯 + 甲醇 ; 参考:《青岛科技大学》2017年硕士论文


【摘要】:碳酸二甲酯(DMC)-甲醇常压下形成共沸物,采用普通精馏工艺不能得到高纯度产品。本文利用Aspen Plus和Aspen Plus Dynamics软件,采用变压精馏和隔壁塔萃取精馏的方法对DMC-甲醇共沸物系实现有效分离。对于变压精馏,以年度总费用(TAC)最小为目标进行经济优化,确定无热集成、部分热集成和完全热集成工艺的最小TAC分别为323,892.509$/y、259,093.925$/y、248,353.238$/y。针对不同热集成工艺中,低压塔温度分布均匀,灵敏板选择困难的问题,给出了一种简单有效的导斜率判据。在此基础上,研究了低压塔不同灵敏板对不同热集成工艺动态特性的影响。动态分析结果表明:组成-温度串级控制策略可以有效的处理无热集成、部分热集成工艺的进料流量与组成扰动。无热集成工艺的最佳温度控制板为第31块或30块板,而部分热集成工艺的最佳温度控制板为第31块或10块板。对于完全热集成工艺,低压塔第29块塔板作为灵敏板的压力-补偿温度控制结构,使两塔产品的稳态余差较小,可以处理±20%的进料流量和组成扰动,实现稳健的动态控制。对于隔壁塔萃取精馏(EDWC),基于常规萃取精馏工艺的最优参数,利用三塔模型进行序贯迭代法优化,对应的最小TAC为189,944.75$/y。在动态控制系统中,通过导斜率判据选择出主塔的温度控制板,并研究了温度控制板与控制结构的动态可控性关系。结果表明:当主塔的灵敏板为第12块塔板时,带气相分配比的控制结构能有效处理进料扰动。而当灵敏板为第5块塔板时,无气相分配比控制策略也能紧紧维持产品的纯度。由于调节气相分配比在实际工业生产中极为困难,因此选择主塔灵敏板为第5块塔板的无气相分配比控制结构为EDWC的最佳控制方案。
[Abstract]:The azeotrope is formed under normal pressure of two methyl carbonate (DMC) - methanol, and the high purity product can not be obtained by ordinary distillation. This paper uses Aspen Plus and Aspen Plus Dynamics software to achieve effective separation of DMC- methanol azeotrope system by pressure variable distillation and extractive distillation with wall column. For variable pressure distillation, the annual total cost (TAC) is minimal. In order to optimize the economy and determine the non thermal integration, the minimum TAC of the partial heat integration and the complete thermal integration process is 323892.509$/y, 259093.925$/y, and 248353.238$/y., respectively, for the problem of the uniform temperature distribution of the low pressure tower and the difficulty of the selection of the sensitive plate in the different heat integration processes. On the basis of this, the influence of different sensitive plates on the dynamic characteristics of different heat integration processes is studied. The dynamic analysis shows that the composition temperature cascade control strategy can effectively handle the heat free integration, the feed flow and the composition disturbance of the partial heat integration process. The optimum temperature control plate for the heat integrated process is thirty-first or 30 plates. The optimum temperature control plate for the integrated heat transfer process is thirty-first or 10 plates. For the complete thermal integration process, the pressure compensation temperature control structure of the twenty-ninth pylon of the low pressure tower is used as the pressure compensation temperature control structure for the sensitive plate, which makes the steady-state residual difference of the two tower products less, and can handle the feed flow rate and the composition disturbance of 20%, so as to achieve robust dynamic control. EDWC, based on the optimal parameters of the conventional extractive distillation process, the three tower model is used to optimize the sequential iterative method. The corresponding minimum TAC is 189944.75$/y. in the dynamic control system. The temperature control plate of the main tower is selected by the guide slope criterion, and the dynamic controllability relationship between the temperature control plate and the control structure is studied. Ming: when the sensitive plate of the main tower is twelfth plates, the control structure with the gas phase ratio can effectively handle the feed disturbance. When the sensitive plate is the fifth plate, the gas distribution ratio control strategy can also maintain the purity of the product tightly. Because it is extremely difficult to adjust the gas phase distribution ratio in the actual industrial production, the main tower sensitive plate is chosen. The optimum control scheme for the fifth trays is EDWC without gas phase distribution ratio.
【学位授予单位】:青岛科技大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TQ028.31

【参考文献】

相关期刊论文 前10条

1 刘立新;陈梦琪;刘育良;王建新;孙兰义;;共沸精馏隔壁塔与萃取精馏隔壁塔的控制研究[J];化工进展;2017年02期

2 张青瑞;彭家瑶;张凯;;热集成变压分离碳酸二甲酯-甲醇的优化与控制[J];化学工程;2017年01期

3 Zhishan Zhang;Qingjun Zhang;Guijie Li;Meiling Liu;Jun Gao;;Design and control of methyl acetate-methanol separation via heat-integrated pressure-swing distillation[J];Chinese Journal of Chemical Engineering;2016年11期

4 索潇萌;戴昕;虞昊;张浩;叶青;;分隔壁萃取精馏塔分离乙酸乙酯-异丙醇[J];石油学报(石油加工);2016年01期

5 翟建;刘育良;李鲁闽;王秋圆;孙兰义;;萃取精馏分离苯/环己烷共沸体系模拟与优化[J];化工学报;2015年09期

6 刘育良;翟建;李鲁闽;王秋圆;孙兰义;;萃取精馏分离苯/环己烷共沸体系的控制策略[J];化工学报;2015年09期

7 方静;赵寒梅;祁建超;李春利;齐俊杰;郭佳佳;;隔壁塔节能效果研究(英文)[J];Chinese Journal of Chemical Engineering;2015年06期

8 李军;王纯正;马占华;孙兰义;;基于Aspen Plus和NSGA-Ⅱ的隔壁塔多目标优化研究[J];高校化学工程学报;2015年02期

9 蔺锡钰;吴昊;沈本贤;凌昊;;Kaibel分壁精馏塔分离芳烃的稳态和动态模拟[J];化工学报;2015年04期

10 辛燕平;赵明;夏铭;孟继红;姚芳莲;许春建;;热集成变压精馏分离吡啶-水的控制研究[J];化学工程;2014年11期

相关博士学位论文 前1条

1 夏铭;用于分离共沸物的节能隔壁塔的设计与控制研究[D];天津大学;2014年

相关硕士学位论文 前2条

1 王乔毅;甲缩醛/甲醇分离之萃取精馏与变压精馏的设计与控制[D];天津大学;2012年

2 曹海龙;乙酸乙酯—异丙醇共沸物分离方法研究[D];天津大学;2009年



本文编号:2035035

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/huaxuehuagong/2035035.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户d1c71***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com