当前位置:主页 > 科技论文 > 化学工程论文 >

铋基钙钛矿结构材料的制备与电学性能研究

发布时间:2018-07-22 19:55
【摘要】:铋基钙钛矿结构电子材料由于其独特的介电、铁电、压电等方面的性能而备受关注,其中,铁酸铋(BiFeO_3,BFO)是唯一室温下同时具有铁电序和反铁磁序的多铁材料,表现出良好的电磁学特性、半导体特性、阻变特性和气敏性能等;此外,钛酸铋钠(Bi_(0.5)Na_(0.5)TiO_3,BNT)则是一种具有优良压电性能的材料,通过与钛酸铋钾(Bi0.5K0.5TiO3,BKT)等按一定比例复合,在构成准同型相界(MPB)基础上改性,会表现出高的电致应变性能和优良的介电调谐性能等。因此,本论文以BiFeO_3和Bi_(0.5)Na_(0.5)TiO_3基材料为研究对象,采用固相反应法、溶胶凝胶法和水热法等方法,对其进行A位离子取代或复合改性,并研究了取代复合对其铁电、压电、介电调谐、电致应变以及气敏等性能的影响规律。采用固相反应法制备了A位La取代的BiFeO_3(Bi1-xLaxFeO3,BLF)陶瓷,研究取代比例对其电学非线性的影响。在不同气氛下对BLF进行热处理并测试分析电学性能,发现BLF电导机制属于p型空穴导电机制,热处理气氛的氧分压越高导电性越好。BLF存在非线性伏安特性,当外电场超过一定阈值之后,电流大幅增加,电阻明显减小,非线性系数随La取代量的减少而增加,随温度的升高而增加,随热处理气氛氧分压的增加而增加,经过氧气退火处理的BLF非线性系数最高。指出这种阻变效应来源于其铁电畴与畴壁处的微观电子异质结构,铁电畴与畴壁的导电性存在差异而导致畴壁处存在整流效应。采用溶胶凝胶法制备了A位Ba取代的BiFeO_3(Bi0.9Ba0.1FeO2.95,BBFO10)粉体,研究了其对几种典型挥发性气体的气敏性能。BBFO10比纯BFO的气体探测灵敏度有大幅提高,并具有快速的响应恢复速度、良好的气体选择性和长期稳定性。实验得出由于BBFO10比BFO粉体的比表面积大,在气敏反应过程中与气体分子接触吸附的面积增大,有利于提高反应敏感度。另外由于二价Ba2+离子部分取代三价Bi3+离子,使得BBFO10中氧空位浓度增加,也有利于提高BBFO10的气敏性能。采用水热法和微波水热法制备了BiFeO_3和A位Ce取代的BiFeO_3(Bi0.9Ce0.1FeO3,BCFO)粉体,研究了其磁学特性。微波水热法制备的BFO表现出顺磁性,而水热法制备的BFO和BCFO-H表现为弱铁磁性,Ce的部分取代明显提高了BCFO的磁学性能,这是由于内外层轨道杂化电子迁移以及离子半径的差异使BFO的螺旋调制结构发生变化而导致。制备了(1-x)(0.8BNT-0.2BKT)-xNaNbO3(BNKT-xNN)陶瓷,研究了其应变、铁电和介电性能随组分和温度的变化规律。结果表明,随着NN含量的增加,BNKT-xNN逐渐从非遍历性弛豫铁电体转变为遍历性弛豫体,表现为铁电相-弛豫相转变温度TF-R从室温以上逐渐降至室温以下,压电系数d33大幅下降,电滞回线从饱和回线变成瘦腰状,应变S-E曲线由蝴蝶形转变为芽形。非遍历性弛豫体组分在电场作用下发生不可逆相变,从赝立方相转变三方相,升温至TF-R温度以上应变大幅增加。属于遍历性弛豫体组分的BNKT-0.04NN在室温下的电致应变0.445%、Smax/Emax值可达810 pm/V,大应变来源于电场激发的遍历性弛豫相与铁电相之间可逆相变。研究了BNKT-xNN陶瓷的介电调谐性能、热释电性能及导电机制,材料均表现出显著的介电非线性调谐性能,且随着NN含量的不同其介电调谐行为表现不同,作为非遍历弛豫体的组分在场致相变前后介电调谐行为由非线性转变为线性关系,遍历性弛豫体的组分则始终保持非线性关系。BNKT-xNN的导电机制属于n型电子导电机制,其电导率随热处理氧分压浓度的降低而增加,其电导激活能随热处理氧分压浓度的降低而降低。研究了(1-x)(0.8BNT-0.2BKT)-xBiMg2/3Nb1/3O3(BNKT-xBMN)陶瓷的应变、铁电和介电性能随组分和温度的变化规律。BNKT-x BMN的物相为赝立方相,作为非遍历性弛豫铁电体的BNKT-0BMN在室温下表现为典型的铁电体特征,在电场作用下发生不可逆相变。BNKT-0.02BMN为遍历性弛豫铁电体,电致应变值可达0.431%,在较低的电场强度40 kV/cm下,Smax/Emax即可高达862 pm/V,具有较高的场致应变效率,因而适合实际应用。
[Abstract]:Bismuth based perovskite structure electronic materials have attracted much attention due to their unique dielectric, ferroelectric and piezoelectric properties. BiFeO_3 (BFO) is the only ferroelectric and antiferromagnetic material at the same time at room temperature. It shows good electromagnetics, semiconductor properties, resistance and gas sensitivity. In addition, titanic acid Sodium bismuth (Bi_ (0.5) (0.5) Na_ (0.5) TiO_3, BNT) is a kind of material with excellent piezoelectric properties. By combining with potassium bismuth titanate (Bi0.5K0.5TiO3, BKT) in a certain proportion and on the basis of the quasi Homo phase boundary (MPB), it will show high electrostrain properties and excellent dielectric tuning properties. Therefore, this paper is based on BiFeO_3 and Bi_ (0.5) Na_. (0.5) TiO_3 based material was used as the research object. By solid phase reaction, sol-gel method and hydrothermal method, A bit ion substitution or compound modification was carried out, and the effects of substitution composite on its ferroelectric, piezoelectricity, dielectric tuning, electrostrain and gas sensitivity were studied. The BiFeO_3 (Bi) of A position La substitution was prepared by the solid state reaction method. 1-xLaxFeO3, BLF) ceramics, study the effect of the substitution ratio on its electrical nonlinearity. Heat treatment and test the electrical properties of BLF under different atmospheres. It is found that the BLF conductance mechanism belongs to the P cavity conduction mechanism. The higher the oxygen partial pressure in the heat treatment atmosphere is, the better the conductivity is, the better the.BLF is in the nonlinear volt ampere characteristic, when the external electric field exceeds a certain threshold. After the increase of the current and the decrease of the resistance, the nonlinear coefficient increases with the decrease of the La substitution, increases with the increase of the temperature, and increases with the increase of the oxygen partial pressure in the heat treatment atmosphere. The nonlinear coefficient of the annealing treatment is the highest. It is pointed out that this resistance effect comes from the micro electronic heterogeneity at the ferroelectric domain and the domain wall. Structure, the conductivity of ferroelectric domain and domain wall is different, which leads to the existence of rectifying effect at the domain wall. The BiFeO_3 (Bi0.9Ba0.1FeO2.95, BBFO10) powder, which is substituted by A bit Ba, is prepared by sol-gel method. The gas sensing performance of several typical volatile gases is investigated and the sensitivity of the gas detection is significantly higher than that of pure BFO, and it is fast and fast. The response recovery speed, good gas selectivity and long-term stability are obtained. It is found that the area of BBFO10 is larger than the BFO powder, and the area of the contact with the gas molecules increases in the gas sensitive reaction. It is beneficial to increase the sensitivity of the reaction. In addition, the two valence Ba2+ ion division is used to replace the trivalent Bi3+ ion, which makes the oxygen vacancy in BBFO10. The increase in concentration also helps to improve the gas sensitivity of BBFO10. The BiFeO_3 (Bi0.9Ce0.1FeO3, BCFO) powders of BiFeO_3 and A sites were prepared by hydrothermal method and microwave hydrothermal method. The magnetic properties of the BiFeO_3 (Bi0.9Ce0.1FeO3, BCFO) powders were studied. The BFO prepared by the microwave hydrothermal method showed paramagnetic, while the BFO and BCFO-H prepared by hydrothermal method were weak ferromagnetic and Ce partly replaced. The magnetic properties of BCFO are obviously improved. This is due to the variation of the hybrid electron migration and the difference in the ionic radius of the internal and external orbit. The (1-x) (0.8BNT-0.2BKT) -xNaNbO3 (BNKT-xNN) ceramics are prepared. The changes of the strain, ferroelectric and dielectric properties with the components and temperature are studied. With the increase of NN content, BNKT-xNN gradually transforms from non ergodic relaxor ferroelectrics to ergodical relaxor, which shows that the phase transition temperature of ferroelectric phase TF-R decreases from room temperature to room temperature, and the piezoelectric coefficient d33 drops sharply, the hysteresis loop becomes thin waist, and the strain S-E curve is transformed from butterfly shape to bud shape. The irreversible phase transition of the ergodical relaxor component occurs under the action of the electric field. The transformation of the three square phase from the pseudopotential phase to the temperature above TF-R increases significantly. The electrostrain of the BNKT-0.04NN at room temperature is 0.445%, the Smax/Emax value is up to 810 pm/V, and the large strain is derived from the ergodical relaxation phase excited by the electric field. The dielectric tuning properties, the pyroelectric properties and the conduction mechanism of BNKT-xNN ceramics have been studied. The dielectric tuning properties of the materials are significant, and the dielectric tuning behavior is different with the different NN content, and the dielectric tuning behavior of the non ergodic relaxor components before and after the presence of the phase transition is not. The linear transformation is linear, and the group principle of ergodicity relaxor always maintains the nonlinear relation of the nonlinear relation.BNKT-xNN, which is n electron conduction mechanism, and its conductivity increases with the decrease of the concentration of oxygen partial pressure in heat treatment, and its conductance activation energy decreases with the decrease of the concentration of oxygen partial pressure in heat treatment. (1-x) (0.8BNT-0.2BKT) -xBiMg2/3N The strain, ferroelectric and dielectric properties of b1/3O3 (BNKT-xBMN) ceramics vary with the composition and temperature. The phase of.BNKT-x BMN is pseudopotential phase. As a non ergodical relaxor ferroelectric body, BNKT-0BMN exhibits a typical ferroelectric characteristic at room temperature. The irreversible phase transition.BNKT-0.02BMN is a ergodical relaxor ferroelectrics under the action of the electric field. The strain rate can reach 0.431%. Under the low electric field intensity of 40 kV/cm, Smax/Emax can reach up to 862 pm/V and has higher field strain efficiency, so it is suitable for practical application.
【学位授予单位】:西北工业大学
【学位级别】:博士
【学位授予年份】:2016
【分类号】:TQ174.1;TB34

【相似文献】

相关期刊论文 前10条

1 孙尚梅;郑云先;;钙钛矿结构类型功能材料的制备方法概述[J];延边大学学报(自然科学版);2008年02期

2 常振勇,崔连起;钙钛矿金属氧化物催化剂的研究与应用综述[J];精细石油化工;2002年03期

3 杨志胜;杨立功;吴刚;汪茫;陈红征;;基于有机/无机杂化钙钛矿有序结构的异质结及其光伏性能的研究[J];化学学报;2011年06期

4 陈志雄,周方桥,付刚,唐大海;钙钛矿结构陶瓷N型半导化评述[J];材料导报;2000年03期

5 庄志强;王蕴辉;施红阳;;铌镁酸铅类钙钛矿结构铁电多晶体的制备技术[J];华南理工大学学报(自然科学版);1992年03期

6 赵旭,栗萍,唐贵德,张变芳,禹日程;Nb掺杂对双钙钛矿化合物居里温度的影响[J];河北师范大学学报;2004年04期

7 范厚刚,姜伟棣,宫杰,杨丽丽,杨景海;LaNiO_3的制备及结构的研究[J];吉林师范大学学报(自然科学版);2004年02期

8 钟伟,吴小玲,姜洪英,汤怒江,都有为;碱金属掺杂ABO_3和A_3B_2O_7型钙钛矿磁卡、磁电阻效应研究[J];稀有金属;2003年05期

9 方亮,张辉,孟范成,洪学濵,刘韩星,袁润章;类钙钛矿新铌酸盐Ba_5LaTi_2Nb_3O_(18)的合成、结构与介电特性[J];高等学校化学学报;2004年07期

10 欧阳颖,秦永宁,马智;纳米钙钛矿的性能及应用进展[J];天津化工;2002年01期

相关会议论文 前10条

1 孟健;冯静;刘孝娟;吕敏峰;刘建芬;周德凤;;层状钙钛矿结构化合物的电性和磁性的研究[A];中国化学会第二十五届学术年会论文摘要集(下册)[C];2006年

2 童鹏;孙玉平;;锰基反钙钛矿结构功能材料研究进展[A];2012中国功能新材料学术论坛暨第三届全国电磁材料及器件学术会议论文摘要集[C];2012年

3 李菲;翁履谦;徐国跃;张楼英;;溶液络合法制备钙钛矿结构电子陶瓷粉体的合成与表征[A];第五届中国功能材料及其应用学术会议论文集Ⅲ[C];2004年

4 肖万生;谭大勇;熊小林;刘景;徐济安;;PbCrO_3立方钙钛矿压致等结构相变[A];中国矿物岩石地球化学学会第13届学术年会论文集[C];2011年

5 欧俊;吴伯麟;钟莲云;董顺熙;;Ba(Mg~(x/12)Ta~(2x/12)Zr~((12-3x)/12))O_3系统相关系的研究[A];第五届中国功能材料及其应用学术会议论文集Ⅲ[C];2004年

6 单跃进;;新型热电换能材料-有序钙钛矿结构氧化物Cd_3TeO_6的研究[A];2004年中国材料研讨会论文摘要集[C];2004年

7 程思园;吴刚;邓萌;陈红征;汪茫;;基于N-6-氨己基咔唑的有机-无机杂化层状钙钛矿材料[A];2007年全国高分子学术论文报告会论文摘要集(下册)[C];2007年

8 田庚方;李国宝;廖复辉;林建华;刘蕴韬;陈东风;;新型六方钙钛矿Ba_5Ho_(1-x)Mn_4O_(15-y)的合成、结构与性质[A];中国原子能科学研究院年报 2009[C];2010年

9 隋郁;王阳;王先杰;王一;朱瑞滨;;钙钛矿La_(1-x)Ce_xCoO_3自旋态转变驱动的热电响应[A];2011中国材料研讨会论文摘要集[C];2011年

10 陈涛;;形成CH_3NH_3PbI_(3-x)Cl_x钙钛矿吸收层的化学路径以及在反式电池结构中应用[A];中国化学会第29届学术年会摘要集——第25分会:有机光伏[C];2014年

相关博士学位论文 前10条

1 董广志;铋基钙钛矿结构材料的制备与电学性能研究[D];西北工业大学;2016年

2 张晨阳;钙钛矿多铁材料的合成与性质研究[D];吉林大学;2015年

3 赵立峰;非均质锰基钙钛矿的磁及输运特性研究[D];华中科技大学;2005年

4 童鹏;反钙钛矿结构镍基化合物研究[D];中国科学院研究生院(合肥物质科学研究院);2007年

5 杨威;高活性纳米LaFe系钙钛矿的控制合成及其催化脱除小分子污染气体的机制研究[D];北京化工大学;2013年

6 薛瑞婷;有机无机类钙钛矿杂化分子材料的制备和表征[D];中国海洋大学;2011年

7 亓淑艳;锰(钴)基钙钛矿复合氧化物的制备及磁性研究[D];哈尔滨工程大学;2008年

8 谢颖;A~(2+)B~(4+)O_3型钙钛矿晶体的结构相变和表面稳定性的研究[D];哈尔滨工业大学;2008年

9 任召辉;钙钛矿和前钙钛矿氧化物纳米材料的制备、结构与性能研究[D];浙江大学;2008年

10 郑莹莹;有机/无机杂化钙钛矿结构光电功能材料的研究[D];浙江大学;2007年

相关硕士学位论文 前10条

1 肖池池;In掺杂SrCe_(0.95)Tm_(0.05)O_(3-δ)膜的稳定性和透氢量研究[D];华南理工大学;2015年

2 唐瑾;钙钛矿复合铁电薄膜的制备研究[D];上海师范大学;2015年

3 骆宗力;钙钛矿太阳能电池制备技术研究[D];河北大学;2015年

4 符凯亮;平面异质结钙钛矿太阳电池的模拟与制备研究[D];郑州大学;2015年

5 姚海云;钙钛矿型Pb基反铁电陶瓷粉的合成、结构表征及电性能[D];内蒙古工业大学;2015年

6 周欢欢;基于掺氯有机金属卤化物钙钛矿材料的高效太阳能电池研究[D];郑州大学;2015年

7 黄利克;平面异质结结构钙钛矿太阳电池的研究[D];宁波大学;2015年

8 董旭;基于有机/无机杂化钙钛矿材料的太阳能电池研究[D];常州大学;2015年

9 刘文强;杂化钙钛矿太阳能电池的制备与性能研究[D];河南大学;2015年

10 孙邴洋;钙钛矿结构光催化材料改性研究:SrTiO_3和NaNbO_3[D];河南大学;2015年



本文编号:2138396

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/huaxuehuagong/2138396.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户16301***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com