铋基钙钛矿结构材料的制备与电学性能研究
[Abstract]:Bismuth based perovskite structure electronic materials have attracted much attention due to their unique dielectric, ferroelectric and piezoelectric properties. BiFeO_3 (BFO) is the only ferroelectric and antiferromagnetic material at the same time at room temperature. It shows good electromagnetics, semiconductor properties, resistance and gas sensitivity. In addition, titanic acid Sodium bismuth (Bi_ (0.5) (0.5) Na_ (0.5) TiO_3, BNT) is a kind of material with excellent piezoelectric properties. By combining with potassium bismuth titanate (Bi0.5K0.5TiO3, BKT) in a certain proportion and on the basis of the quasi Homo phase boundary (MPB), it will show high electrostrain properties and excellent dielectric tuning properties. Therefore, this paper is based on BiFeO_3 and Bi_ (0.5) Na_. (0.5) TiO_3 based material was used as the research object. By solid phase reaction, sol-gel method and hydrothermal method, A bit ion substitution or compound modification was carried out, and the effects of substitution composite on its ferroelectric, piezoelectricity, dielectric tuning, electrostrain and gas sensitivity were studied. The BiFeO_3 (Bi) of A position La substitution was prepared by the solid state reaction method. 1-xLaxFeO3, BLF) ceramics, study the effect of the substitution ratio on its electrical nonlinearity. Heat treatment and test the electrical properties of BLF under different atmospheres. It is found that the BLF conductance mechanism belongs to the P cavity conduction mechanism. The higher the oxygen partial pressure in the heat treatment atmosphere is, the better the conductivity is, the better the.BLF is in the nonlinear volt ampere characteristic, when the external electric field exceeds a certain threshold. After the increase of the current and the decrease of the resistance, the nonlinear coefficient increases with the decrease of the La substitution, increases with the increase of the temperature, and increases with the increase of the oxygen partial pressure in the heat treatment atmosphere. The nonlinear coefficient of the annealing treatment is the highest. It is pointed out that this resistance effect comes from the micro electronic heterogeneity at the ferroelectric domain and the domain wall. Structure, the conductivity of ferroelectric domain and domain wall is different, which leads to the existence of rectifying effect at the domain wall. The BiFeO_3 (Bi0.9Ba0.1FeO2.95, BBFO10) powder, which is substituted by A bit Ba, is prepared by sol-gel method. The gas sensing performance of several typical volatile gases is investigated and the sensitivity of the gas detection is significantly higher than that of pure BFO, and it is fast and fast. The response recovery speed, good gas selectivity and long-term stability are obtained. It is found that the area of BBFO10 is larger than the BFO powder, and the area of the contact with the gas molecules increases in the gas sensitive reaction. It is beneficial to increase the sensitivity of the reaction. In addition, the two valence Ba2+ ion division is used to replace the trivalent Bi3+ ion, which makes the oxygen vacancy in BBFO10. The increase in concentration also helps to improve the gas sensitivity of BBFO10. The BiFeO_3 (Bi0.9Ce0.1FeO3, BCFO) powders of BiFeO_3 and A sites were prepared by hydrothermal method and microwave hydrothermal method. The magnetic properties of the BiFeO_3 (Bi0.9Ce0.1FeO3, BCFO) powders were studied. The BFO prepared by the microwave hydrothermal method showed paramagnetic, while the BFO and BCFO-H prepared by hydrothermal method were weak ferromagnetic and Ce partly replaced. The magnetic properties of BCFO are obviously improved. This is due to the variation of the hybrid electron migration and the difference in the ionic radius of the internal and external orbit. The (1-x) (0.8BNT-0.2BKT) -xNaNbO3 (BNKT-xNN) ceramics are prepared. The changes of the strain, ferroelectric and dielectric properties with the components and temperature are studied. With the increase of NN content, BNKT-xNN gradually transforms from non ergodic relaxor ferroelectrics to ergodical relaxor, which shows that the phase transition temperature of ferroelectric phase TF-R decreases from room temperature to room temperature, and the piezoelectric coefficient d33 drops sharply, the hysteresis loop becomes thin waist, and the strain S-E curve is transformed from butterfly shape to bud shape. The irreversible phase transition of the ergodical relaxor component occurs under the action of the electric field. The transformation of the three square phase from the pseudopotential phase to the temperature above TF-R increases significantly. The electrostrain of the BNKT-0.04NN at room temperature is 0.445%, the Smax/Emax value is up to 810 pm/V, and the large strain is derived from the ergodical relaxation phase excited by the electric field. The dielectric tuning properties, the pyroelectric properties and the conduction mechanism of BNKT-xNN ceramics have been studied. The dielectric tuning properties of the materials are significant, and the dielectric tuning behavior is different with the different NN content, and the dielectric tuning behavior of the non ergodic relaxor components before and after the presence of the phase transition is not. The linear transformation is linear, and the group principle of ergodicity relaxor always maintains the nonlinear relation of the nonlinear relation.BNKT-xNN, which is n electron conduction mechanism, and its conductivity increases with the decrease of the concentration of oxygen partial pressure in heat treatment, and its conductance activation energy decreases with the decrease of the concentration of oxygen partial pressure in heat treatment. (1-x) (0.8BNT-0.2BKT) -xBiMg2/3N The strain, ferroelectric and dielectric properties of b1/3O3 (BNKT-xBMN) ceramics vary with the composition and temperature. The phase of.BNKT-x BMN is pseudopotential phase. As a non ergodical relaxor ferroelectric body, BNKT-0BMN exhibits a typical ferroelectric characteristic at room temperature. The irreversible phase transition.BNKT-0.02BMN is a ergodical relaxor ferroelectrics under the action of the electric field. The strain rate can reach 0.431%. Under the low electric field intensity of 40 kV/cm, Smax/Emax can reach up to 862 pm/V and has higher field strain efficiency, so it is suitable for practical application.
【学位授予单位】:西北工业大学
【学位级别】:博士
【学位授予年份】:2016
【分类号】:TQ174.1;TB34
【相似文献】
相关期刊论文 前10条
1 孙尚梅;郑云先;;钙钛矿结构类型功能材料的制备方法概述[J];延边大学学报(自然科学版);2008年02期
2 常振勇,崔连起;钙钛矿金属氧化物催化剂的研究与应用综述[J];精细石油化工;2002年03期
3 杨志胜;杨立功;吴刚;汪茫;陈红征;;基于有机/无机杂化钙钛矿有序结构的异质结及其光伏性能的研究[J];化学学报;2011年06期
4 陈志雄,周方桥,付刚,唐大海;钙钛矿结构陶瓷N型半导化评述[J];材料导报;2000年03期
5 庄志强;王蕴辉;施红阳;;铌镁酸铅类钙钛矿结构铁电多晶体的制备技术[J];华南理工大学学报(自然科学版);1992年03期
6 赵旭,栗萍,唐贵德,张变芳,禹日程;Nb掺杂对双钙钛矿化合物居里温度的影响[J];河北师范大学学报;2004年04期
7 范厚刚,姜伟棣,宫杰,杨丽丽,杨景海;LaNiO_3的制备及结构的研究[J];吉林师范大学学报(自然科学版);2004年02期
8 钟伟,吴小玲,姜洪英,汤怒江,都有为;碱金属掺杂ABO_3和A_3B_2O_7型钙钛矿磁卡、磁电阻效应研究[J];稀有金属;2003年05期
9 方亮,张辉,孟范成,洪学濵,刘韩星,袁润章;类钙钛矿新铌酸盐Ba_5LaTi_2Nb_3O_(18)的合成、结构与介电特性[J];高等学校化学学报;2004年07期
10 欧阳颖,秦永宁,马智;纳米钙钛矿的性能及应用进展[J];天津化工;2002年01期
相关会议论文 前10条
1 孟健;冯静;刘孝娟;吕敏峰;刘建芬;周德凤;;层状钙钛矿结构化合物的电性和磁性的研究[A];中国化学会第二十五届学术年会论文摘要集(下册)[C];2006年
2 童鹏;孙玉平;;锰基反钙钛矿结构功能材料研究进展[A];2012中国功能新材料学术论坛暨第三届全国电磁材料及器件学术会议论文摘要集[C];2012年
3 李菲;翁履谦;徐国跃;张楼英;;溶液络合法制备钙钛矿结构电子陶瓷粉体的合成与表征[A];第五届中国功能材料及其应用学术会议论文集Ⅲ[C];2004年
4 肖万生;谭大勇;熊小林;刘景;徐济安;;PbCrO_3立方钙钛矿压致等结构相变[A];中国矿物岩石地球化学学会第13届学术年会论文集[C];2011年
5 欧俊;吴伯麟;钟莲云;董顺熙;;Ba(Mg~(x/12)Ta~(2x/12)Zr~((12-3x)/12))O_3系统相关系的研究[A];第五届中国功能材料及其应用学术会议论文集Ⅲ[C];2004年
6 单跃进;;新型热电换能材料-有序钙钛矿结构氧化物Cd_3TeO_6的研究[A];2004年中国材料研讨会论文摘要集[C];2004年
7 程思园;吴刚;邓萌;陈红征;汪茫;;基于N-6-氨己基咔唑的有机-无机杂化层状钙钛矿材料[A];2007年全国高分子学术论文报告会论文摘要集(下册)[C];2007年
8 田庚方;李国宝;廖复辉;林建华;刘蕴韬;陈东风;;新型六方钙钛矿Ba_5Ho_(1-x)Mn_4O_(15-y)的合成、结构与性质[A];中国原子能科学研究院年报 2009[C];2010年
9 隋郁;王阳;王先杰;王一;朱瑞滨;;钙钛矿La_(1-x)Ce_xCoO_3自旋态转变驱动的热电响应[A];2011中国材料研讨会论文摘要集[C];2011年
10 陈涛;;形成CH_3NH_3PbI_(3-x)Cl_x钙钛矿吸收层的化学路径以及在反式电池结构中应用[A];中国化学会第29届学术年会摘要集——第25分会:有机光伏[C];2014年
相关博士学位论文 前10条
1 董广志;铋基钙钛矿结构材料的制备与电学性能研究[D];西北工业大学;2016年
2 张晨阳;钙钛矿多铁材料的合成与性质研究[D];吉林大学;2015年
3 赵立峰;非均质锰基钙钛矿的磁及输运特性研究[D];华中科技大学;2005年
4 童鹏;反钙钛矿结构镍基化合物研究[D];中国科学院研究生院(合肥物质科学研究院);2007年
5 杨威;高活性纳米LaFe系钙钛矿的控制合成及其催化脱除小分子污染气体的机制研究[D];北京化工大学;2013年
6 薛瑞婷;有机无机类钙钛矿杂化分子材料的制备和表征[D];中国海洋大学;2011年
7 亓淑艳;锰(钴)基钙钛矿复合氧化物的制备及磁性研究[D];哈尔滨工程大学;2008年
8 谢颖;A~(2+)B~(4+)O_3型钙钛矿晶体的结构相变和表面稳定性的研究[D];哈尔滨工业大学;2008年
9 任召辉;钙钛矿和前钙钛矿氧化物纳米材料的制备、结构与性能研究[D];浙江大学;2008年
10 郑莹莹;有机/无机杂化钙钛矿结构光电功能材料的研究[D];浙江大学;2007年
相关硕士学位论文 前10条
1 肖池池;In掺杂SrCe_(0.95)Tm_(0.05)O_(3-δ)膜的稳定性和透氢量研究[D];华南理工大学;2015年
2 唐瑾;钙钛矿复合铁电薄膜的制备研究[D];上海师范大学;2015年
3 骆宗力;钙钛矿太阳能电池制备技术研究[D];河北大学;2015年
4 符凯亮;平面异质结钙钛矿太阳电池的模拟与制备研究[D];郑州大学;2015年
5 姚海云;钙钛矿型Pb基反铁电陶瓷粉的合成、结构表征及电性能[D];内蒙古工业大学;2015年
6 周欢欢;基于掺氯有机金属卤化物钙钛矿材料的高效太阳能电池研究[D];郑州大学;2015年
7 黄利克;平面异质结结构钙钛矿太阳电池的研究[D];宁波大学;2015年
8 董旭;基于有机/无机杂化钙钛矿材料的太阳能电池研究[D];常州大学;2015年
9 刘文强;杂化钙钛矿太阳能电池的制备与性能研究[D];河南大学;2015年
10 孙邴洋;钙钛矿结构光催化材料改性研究:SrTiO_3和NaNbO_3[D];河南大学;2015年
,本文编号:2138396
本文链接:https://www.wllwen.com/kejilunwen/huaxuehuagong/2138396.html