一种新型环境友好高效卤水阻垢剂
[Abstract]:In the process of underground brine mining, with the change of temperature and pressure in the underground geological conditions and the process of extracting halogen, different fractions of the bittern occur in different degrees of crystallization and scaling, which reduces the effective volume of the pipeline, increases the pipe resistance, reduces the production and restricts the exploitation and sustainable utilization of the brine. In the process of water mining, the phenomenon of crystallization and scaling, which should be added to the scale inhibitor, should be added to inhibit the production of the scale, thus improving the production of the brine, reducing the energy consumption, and ensuring the continuous utilization of the equipment and structures of the halogen. In the process of developing the scale inhibitor, the effect of the follow-up on the environment should be taken into consideration, so the phosphorus free, nitrogen free and biodegradable materials should be selected. This paper relies on the key technology of high efficiency mining in the deep brine of the State 863 plan of the the Yellow River Delta. On the basis of consulting the relevant literature at home and abroad, the problem of salt precipitation and scaling is easy to occur in the process of extraction and transportation of deep brine, and a new green resistance is developed on the basis of the analysis of the scaling mechanism of the extraction and extraction of the brine. The scale agent not only studies its temperature resistance and salt resistance, but also analyzes its advanced, environmental friendly and scale inhibition mechanism. The main contents and results are as follows: (1) the main salt analysis of unsaturated and saturated brine during extraction and extraction by using ICP-AES, ion selective electrode method, temperature pressure simulation method and so on. The change of the concentration of the scaling elements and the variation of the saturated solubility of the main salt forming elements at various temperatures and pressures have been systematically studied. The results show that: (1) the concentration of the main salt precipitation and scaling elements in the halogen does not change with the change of the depth of the halogen. The concentration change is significant, in which Ca2+ is the first precipitation, followed by Ba2+, Sr2+, and the precipitation of NaCl. The concentration of Sr2+ has the greatest change in the process of extracting to 500m from the underground 1500m. (3) the change rate of the saturated solubility of the four main salt precipitation ions in the saturated brine under the atmospheric pressure and the change rate of the saturation solubility with the elevation of the saturation solubility. It is basically the same. When the temperature is reduced from 120 to 80, the change rate of Ca2+ concentration is the largest. The maximum change rate of Ba2+ concentration is the maximum from 80 C to 60 C. The maximum change rate of Sr2+ concentration is increased from 60 C to 20 C. At 60 C, the saturation solubility of four main salt precipitation ions in saturated brine increases with the pressure increase, but the change rate is basic. Therefore, the temperature change of the saturated brine during the extraction process is the main factor affecting the precipitation sequence of salt precipitation. (2) the formation process of salt scale can be expressed as: brine, scale element saturation, scaling element supersaturation, nucleation, NaCl co precipitation, crystal growth and salt scale, and its main components are NaCl, CaSO4, BaS. O4, SrSO4. in the process of extraction, the phenomenon of salt precipitation and scaling in unsaturated brine is light, and the scale phenomenon of salt precipitation in saturated brine is serious. When the temperature is reduced from 120 to 80, the formation of salt scale with CaSO4 as the main BaSO4, SrSO4 as auxiliary and adsorption coprecipitation NaCl; when from 80 to 60 C, BaSO4 is the main CaSO4, SrSO4 is supplemented and adsorbed together. The salt scale of NaCl was precipitated; from 60 to 20 C, the formation of salt scale with SrSO4 as the main CaSO4 and BaSO4 as the auxiliary and co precipitation of NaCl. (3) in combination with the influence factors and formation process of the above salt precipitation scaling, the mechanism of salt precipitation scaling was elaborated, as follows: with the change of the thermodynamic conditions, such as temperature, pressure and so on, when the solution was formed. When the concentration of the scale ion is higher than the equilibrium concentration, the anion and cation interact to form the ion pair. The ions form the nucleus of the tube wall or other impurities. The scale ions in the solution diffuse, crystallize, and grow up and eventually form a scale on the wall of the tube. Because of the adsorption and co precipitation, the NaCl crystal also precipitates, forming a mixed salt scale and salt evolution. There is a mutual promotion relationship with scaling. The formation of salt scale will also be influenced by the surface state of the pipe, the flow velocity of brine, the species and quantity of microorganism. (4) through the study of polyepoxide succinate PESA, polyaspartic acid PASP, sodium lignosulfonate, twelve alkyl sodium sulfate, fatty alcohol polyoxyethylene ether AEO-9, nonylphenol polyoxyethylene ether TX-1 0, a new scale inhibitor based on polyepoxysuccinic acid and sodium lignosulfonate was developed and tested. The results showed that the scale inhibitor did not contain nitrogen and phosphorus, and the scale inhibition rate of Na+, Ca2+, Ba2+, Sr2+ in brine when the ratio of polyepoxysuccinic acid to sodium lignosulfonate was 3:2 and the dosage was 35mg/L. The scale inhibition rate of 99.43%, 99.45%, 99.24%, 90.85%, and weighted scale inhibition rate is 99.15%, respectively. By comparing the scale of brine, calcium sulfate, barium sulfate, strontium sulphate, and sodium chloride, the lattice distortion of the new compound scale inhibitor on the scale of brine, the chelation and the charge dispersion are stronger. The lattice distortion of barium sulfate and strontium sulphate, strong chelation and the charge dispersion of sodium chloride are stronger for barium sulfate and strontium sulfate. (5) the new scale inhibitor is carried out in shinfa Feicheng Shengli Chemical Co., Ltd., Dongying Dongyue Salt Industry Co., Ltd., Shandong taco Chemical Co., Ltd., and Shouguang national strength Chemical Co., Ltd. The application results show that the new scale inhibitor has good scale inhibition and corrosion inhibition, and the scale inhibition rate can reach more than 90%. Compared with the scale inhibitor used in the process of extraction and extraction at home and abroad, the new scale inhibitor has the advantages of friendly environment, no phosphorus containing nitrogen, good scale inhibition effect and many functions.
【学位授予单位】:山东大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:TQ085.4
【相似文献】
相关期刊论文 前10条
1 贾成凤,李义久;共聚物阻垢剂的研究进展[J];上海化工;2002年18期
2 李艳丽,周柏青,施有弟,王晓伟;反渗透阻垢剂的研究进展[J];工业水处理;2004年03期
3 张冰如,欧阳清华,李风亭;快速评价反渗透专用阻垢剂阻垢性能的实验技术[J];膜科学与技术;2004年06期
4 李冬,董鸿志,张利辉,郭茹辉,张彦河,田彩莉,刘振法;聚合物阻垢剂研究进展[J];河北省科学院学报;2005年01期
5 石华前;夏世斌;;新型反渗透阻垢剂的性能研究及应用[J];国外建材科技;2006年04期
6 舒红英;唐星华;覃毅;;无磷阻垢剂的研究进展[J];江西化工;2006年03期
7 蒋皎梅;陈国松;张红漫;张之翼;;循环冷却水中阻垢剂用量的实验研究[J];工业水处理;2007年01期
8 李伟超;吴晓东;刘平;张贵才;葛际江;;油田用阻垢剂评价研究[J];钻采工艺;2007年01期
9 张洪利;梅超群;赵秋伶;刘志强;;国内阻垢剂研究现状及展望[J];化学工程师;2007年04期
10 田彩莉;姜红静;杨维之;刘振法;高玉华;;适用于高硬度水质的反渗透阻垢剂的研究[J];工业水处理;2007年11期
相关会议论文 前10条
1 田彩莉;刘振法;高玉华;吴运娟;;一种新型环保高效反渗透阻垢剂[A];2008年中国精细化工协会水处理化学品行业年会论文集[C];2008年
2 王蓉蓉;陈浩;李建玺;姜国策;张小刚;郭焱;;海水循环冷却系统阻垢剂单体阻垢性能试验研究[A];2008年中国精细化工协会水处理化学品行业年会论文集[C];2008年
3 吉卫;;一种绿色环保高效膜用阻垢剂[A];膜分离技术在石油和化工行业中应用研讨会论文集[C];2006年
4 彭福兵;;“环境友好”可生化降解的新型增强型马来酸聚合物阻垢剂的研究[A];2013中国水处理技术研讨会暨第33届年会论文集[C];2013年
5 靳晓霞;王会;滕厚开;;有机膦类阻垢剂抑制硫酸钙垢行为的研究[A];2008中国水处理技术研讨会暨第28届年会论文集[C];2008年
6 霍宇凝;陆柱;;聚合物阻垢剂研究进展[A];’2001全国工业用水与废水处理技术交流会论文集暨水处理技术汇编[C];2001年
7 李凡修;辛焰;陈武;;共聚物类阻垢剂的研制进展[A];’2001全国工业用水与废水处理技术交流会论文集暨水处理技术汇编[C];2001年
8 霍宇凝;陆柱;;聚合物阻垢剂研究进展[A];中国土木工程学会水工业分会第四届理事会第一次会议论文集[C];2002年
9 周伟生;吕勇;齐登谷;;反渗透膜用阻垢剂的实验室评价[A];’2004全国水处理技术研讨会暨第24届年会论文集[C];2004年
10 闫岩;;硅垢阻垢剂及评价方法的研究现状[A];’2004全国水处理技术研讨会暨第24届年会论文集[C];2004年
相关重要报纸文章 前4条
1 葛军 于海龙;中铝山东企业研发“新型阻垢剂”达到国内先进水平[N];中国有色金属报;2009年
2 ;反渗透除污阻垢技术[N];科技日报;2006年
3 特约记者 刘宽胜;我压缩机阻垢剂跻身国际前列[N];中国化工报;2010年
4 特约记者 刘宽胜;国产碱性阻垢剂保装置低耗稳运[N];中国化工报;2012年
相关博士学位论文 前5条
1 孙咏红;聚环氧琥珀酸反渗透阻垢剂绿色化学研究[D];中南林业科技大学;2010年
2 周伟生;反渗透膜用药剂的制备及其性能研究[D];天津工业大学;2007年
3 李本高;炼化装置循环冷却水质特性与水处理效果的关系研究[D];石油化工科学研究院;2007年
4 曹生现;冷却水污垢对策评价与预测方法及装置研究[D];华北电力大学(河北);2009年
5 夏明珠;膦酰基羧酸的合成与性能[D];南京理工大学;2006年
相关硕士学位论文 前10条
1 昌诚;绿色膜用阻垢剂的制备与评价研究[D];山东建筑大学;2015年
2 张鑫;一种新型环境友好高效卤水阻垢剂[D];山东大学;2015年
3 梁兆燕;循环冷却水中聚合物的分析研究[D];山东大学;2015年
4 姜红静;环保型反渗透阻垢剂的复配及性能研究[D];河北工业大学;2008年
5 申战辉;低温多效蒸馏海水淡化专用阻垢剂的研制与性能评价[D];南京理工大学;2010年
6 冷曼希;新型无磷阻垢剂的合成及性能评价[D];西南石油大学;2010年
7 吴雁;水溶性固体阻垢剂的研究[D];西南石油学院;2003年
8 侯振宇;油井高钙、锶、钡环境下高效阻垢剂的制备[D];西北工业大学;2006年
9 何爱江;阻垢剂性能及机理研究[D];四川大学;2006年
10 王海凤;新型低磷反渗透膜阻垢剂的研制及性能研究[D];同济大学;2007年
,本文编号:2138547
本文链接:https://www.wllwen.com/kejilunwen/huaxuehuagong/2138547.html