当前位置:主页 > 科技论文 > 化学工程论文 >

一种新型环境友好高效卤水阻垢剂

发布时间:2018-07-22 20:54
【摘要】:在地下卤水的开采过程中,随着地下地质条件及其采提卤过程中温度和压力的变化,卤水中不同组分会发生不同程度的析晶、结垢现象,减小了管道的有效容积,增加了管道阻力,进而减少了产量,制约了卤水的开采和可持续利用。针对卤水开采过程中易出现的析晶、结垢现象,需要加入阻垢剂来抑制垢的产生,从而提高卤水的开采量,降低能耗,确保采提卤设备与构筑物的持续利用。在阻垢剂的研制过程中,要考虑到后续对环境的影响,所以要选择无磷、无氮、易生物降解的单体制备。本文依托国家863计划黄河三角洲深层卤水高效开采关键技术,在查阅国内外相关文献的基础上,针对深层卤水在采提输过程中易发生不同程度的析盐结垢问题,在分析采提卤过程结垢机理的基础上,研发了一种新型绿色阻垢剂,不仅对其抗温性、抗盐性进行了研究,还分析了其先进性、环境友好性以及阻垢机理,研究的主要内容和结果如下:(1)采用ICP-AES、离子选择电极法、温度压力模拟法等分析手段,分别对不饱和、饱和卤水在采提取过程中卤水主要析盐结垢元素的浓度变化及其主要析盐结垢元素在各温度、压力下的饱和溶解度变化规律进行了系统研究,结果表明:①对于不饱和卤水,卤水主要析盐结垢元素的浓度不随提卤深度的变化而变化;②对于饱和卤水,主要析盐结垢离子的浓度变化显著,其中Ca2+最先析出,其次是Ba2+、Sr2+,同时伴随着NaCl的析出。在从地下1500m提至500m的过程中,Sr2+的浓度变化最大;③常压下饱和卤水中四种主要析盐结垢离子的饱和溶解度随温度的变化率与饱和溶解度随提升高度的变化率基本一致。当温度由120℃降至80℃时,Ca2+浓度的变化率最大,从80℃降至60℃时,Ba2+浓度的变化率最大,从60℃降至20℃时,Sr2+浓度的变化率最大;④60℃时,饱和卤水中四种主要析盐结垢离子的饱和溶解度随压力增加而增大,但变化率基本相同。因此,饱和卤水在提输过程中的温度变化是影响析盐结垢离子析出顺序的主要因素。(2)盐垢的形成过程可以表示为:卤水→结垢元素饱和→结垢元素过饱和→形成晶核→NaCl共沉淀→晶体长大→盐垢,而其主要成分为NaCl、CaSO4、 BaSO4、SrSO4。在采提过程中,不饱和卤水中析盐结垢现象较轻,饱和卤水析盐结垢现象严重。当温度由120℃降至80℃时,形成的是以CaSO4为主BaSO4、 SrSO4为辅并吸附共沉淀NaCl的盐垢;从80℃降至60℃时,形成的是以BaSO4为主CaSO4、SrSO4为辅并吸附共沉淀NaCl的盐垢;从60℃降至20℃时,形成的是以SrSO4为主CaSO4、BaSO4为辅并吸附共沉淀NaCl的盐垢。(3)结合上述析盐结垢影响因素和形成过程的研究,详细阐述了析盐结垢机理,具体如下:随着温度、压力等热力学条件的改变,当溶液中的成垢离子浓度高于平衡浓度时,阴、阳离子相互作用形成离子对,离子对遇到管壁或其他杂质形成晶核,溶液中的成垢离子不断向壁面扩散、结晶、长大,最终在管壁上形成结垢,由于吸附、共沉淀作用,NaCl晶体也随之析出,形成混合盐垢,析盐与结垢之间存在着相互促进的关系。盐垢的形成还会受到管道表面状态、卤水流速、微生物种类和数量等的影响。(4)通过研究聚环氧琥珀酸PESA、聚天冬氨酸PASP、木质素磺酸钠、十二烷基硫酸钠、脂肪醇聚氧乙烯醚AEO-9、壬基酚聚氧乙烯醚TX-10的阻垢抑垢性能,开发了以聚环氧琥珀酸和木质素磺酸钠为主要成分的新型阻垢剂,并进行了性能测试,结果表明:该阻垢剂不含氮、磷,在聚环氧琥珀酸和木质素磺酸钠复配比为3:2,投加量为35mg/L时,对卤水中Na+、Ca2+、Ba2+、Sr2+的阻垢率分别达到了99.43%、99.45%、99.24%、90.85%,加权阻垢率99.15%;通过对比加入阻垢剂前后卤水垢物、硫酸钙、硫酸钡、硫酸锶、氯化钠的扫描电镜图,得出新型复配阻垢剂对卤水垢物的晶格畸变、螯合作用和电荷分散作用较强。其中对硫酸钙的螯合作用和电荷分散作用较强,对硫酸钡、硫酸锶的晶格畸变、螯合作用较强,对氯化钠的电荷分散作用较强。(5)新型阻垢剂在信发集团肥城胜利化工有限公司、东营东岳盐业有限公司、山东默锐化工有限公司、寿光市国力化工有限公司分别进行了现场应用,应用结果表明:新型阻垢剂具有良好的阻垢性和一定的缓蚀作用,阻垢率可达到90%以上。与国内外适用于采提卤过程中的阻垢剂相比,新型阻垢剂具有环境友好、不含磷氮、阻垢效果好、功能多等优点。
[Abstract]:In the process of underground brine mining, with the change of temperature and pressure in the underground geological conditions and the process of extracting halogen, different fractions of the bittern occur in different degrees of crystallization and scaling, which reduces the effective volume of the pipeline, increases the pipe resistance, reduces the production and restricts the exploitation and sustainable utilization of the brine. In the process of water mining, the phenomenon of crystallization and scaling, which should be added to the scale inhibitor, should be added to inhibit the production of the scale, thus improving the production of the brine, reducing the energy consumption, and ensuring the continuous utilization of the equipment and structures of the halogen. In the process of developing the scale inhibitor, the effect of the follow-up on the environment should be taken into consideration, so the phosphorus free, nitrogen free and biodegradable materials should be selected. This paper relies on the key technology of high efficiency mining in the deep brine of the State 863 plan of the the Yellow River Delta. On the basis of consulting the relevant literature at home and abroad, the problem of salt precipitation and scaling is easy to occur in the process of extraction and transportation of deep brine, and a new green resistance is developed on the basis of the analysis of the scaling mechanism of the extraction and extraction of the brine. The scale agent not only studies its temperature resistance and salt resistance, but also analyzes its advanced, environmental friendly and scale inhibition mechanism. The main contents and results are as follows: (1) the main salt analysis of unsaturated and saturated brine during extraction and extraction by using ICP-AES, ion selective electrode method, temperature pressure simulation method and so on. The change of the concentration of the scaling elements and the variation of the saturated solubility of the main salt forming elements at various temperatures and pressures have been systematically studied. The results show that: (1) the concentration of the main salt precipitation and scaling elements in the halogen does not change with the change of the depth of the halogen. The concentration change is significant, in which Ca2+ is the first precipitation, followed by Ba2+, Sr2+, and the precipitation of NaCl. The concentration of Sr2+ has the greatest change in the process of extracting to 500m from the underground 1500m. (3) the change rate of the saturated solubility of the four main salt precipitation ions in the saturated brine under the atmospheric pressure and the change rate of the saturation solubility with the elevation of the saturation solubility. It is basically the same. When the temperature is reduced from 120 to 80, the change rate of Ca2+ concentration is the largest. The maximum change rate of Ba2+ concentration is the maximum from 80 C to 60 C. The maximum change rate of Sr2+ concentration is increased from 60 C to 20 C. At 60 C, the saturation solubility of four main salt precipitation ions in saturated brine increases with the pressure increase, but the change rate is basic. Therefore, the temperature change of the saturated brine during the extraction process is the main factor affecting the precipitation sequence of salt precipitation. (2) the formation process of salt scale can be expressed as: brine, scale element saturation, scaling element supersaturation, nucleation, NaCl co precipitation, crystal growth and salt scale, and its main components are NaCl, CaSO4, BaS. O4, SrSO4. in the process of extraction, the phenomenon of salt precipitation and scaling in unsaturated brine is light, and the scale phenomenon of salt precipitation in saturated brine is serious. When the temperature is reduced from 120 to 80, the formation of salt scale with CaSO4 as the main BaSO4, SrSO4 as auxiliary and adsorption coprecipitation NaCl; when from 80 to 60 C, BaSO4 is the main CaSO4, SrSO4 is supplemented and adsorbed together. The salt scale of NaCl was precipitated; from 60 to 20 C, the formation of salt scale with SrSO4 as the main CaSO4 and BaSO4 as the auxiliary and co precipitation of NaCl. (3) in combination with the influence factors and formation process of the above salt precipitation scaling, the mechanism of salt precipitation scaling was elaborated, as follows: with the change of the thermodynamic conditions, such as temperature, pressure and so on, when the solution was formed. When the concentration of the scale ion is higher than the equilibrium concentration, the anion and cation interact to form the ion pair. The ions form the nucleus of the tube wall or other impurities. The scale ions in the solution diffuse, crystallize, and grow up and eventually form a scale on the wall of the tube. Because of the adsorption and co precipitation, the NaCl crystal also precipitates, forming a mixed salt scale and salt evolution. There is a mutual promotion relationship with scaling. The formation of salt scale will also be influenced by the surface state of the pipe, the flow velocity of brine, the species and quantity of microorganism. (4) through the study of polyepoxide succinate PESA, polyaspartic acid PASP, sodium lignosulfonate, twelve alkyl sodium sulfate, fatty alcohol polyoxyethylene ether AEO-9, nonylphenol polyoxyethylene ether TX-1 0, a new scale inhibitor based on polyepoxysuccinic acid and sodium lignosulfonate was developed and tested. The results showed that the scale inhibitor did not contain nitrogen and phosphorus, and the scale inhibition rate of Na+, Ca2+, Ba2+, Sr2+ in brine when the ratio of polyepoxysuccinic acid to sodium lignosulfonate was 3:2 and the dosage was 35mg/L. The scale inhibition rate of 99.43%, 99.45%, 99.24%, 90.85%, and weighted scale inhibition rate is 99.15%, respectively. By comparing the scale of brine, calcium sulfate, barium sulfate, strontium sulphate, and sodium chloride, the lattice distortion of the new compound scale inhibitor on the scale of brine, the chelation and the charge dispersion are stronger. The lattice distortion of barium sulfate and strontium sulphate, strong chelation and the charge dispersion of sodium chloride are stronger for barium sulfate and strontium sulfate. (5) the new scale inhibitor is carried out in shinfa Feicheng Shengli Chemical Co., Ltd., Dongying Dongyue Salt Industry Co., Ltd., Shandong taco Chemical Co., Ltd., and Shouguang national strength Chemical Co., Ltd. The application results show that the new scale inhibitor has good scale inhibition and corrosion inhibition, and the scale inhibition rate can reach more than 90%. Compared with the scale inhibitor used in the process of extraction and extraction at home and abroad, the new scale inhibitor has the advantages of friendly environment, no phosphorus containing nitrogen, good scale inhibition effect and many functions.
【学位授予单位】:山东大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:TQ085.4

【相似文献】

相关期刊论文 前10条

1 贾成凤,李义久;共聚物阻垢剂的研究进展[J];上海化工;2002年18期

2 李艳丽,周柏青,施有弟,王晓伟;反渗透阻垢剂的研究进展[J];工业水处理;2004年03期

3 张冰如,欧阳清华,李风亭;快速评价反渗透专用阻垢剂阻垢性能的实验技术[J];膜科学与技术;2004年06期

4 李冬,董鸿志,张利辉,郭茹辉,张彦河,田彩莉,刘振法;聚合物阻垢剂研究进展[J];河北省科学院学报;2005年01期

5 石华前;夏世斌;;新型反渗透阻垢剂的性能研究及应用[J];国外建材科技;2006年04期

6 舒红英;唐星华;覃毅;;无磷阻垢剂的研究进展[J];江西化工;2006年03期

7 蒋皎梅;陈国松;张红漫;张之翼;;循环冷却水中阻垢剂用量的实验研究[J];工业水处理;2007年01期

8 李伟超;吴晓东;刘平;张贵才;葛际江;;油田用阻垢剂评价研究[J];钻采工艺;2007年01期

9 张洪利;梅超群;赵秋伶;刘志强;;国内阻垢剂研究现状及展望[J];化学工程师;2007年04期

10 田彩莉;姜红静;杨维之;刘振法;高玉华;;适用于高硬度水质的反渗透阻垢剂的研究[J];工业水处理;2007年11期

相关会议论文 前10条

1 田彩莉;刘振法;高玉华;吴运娟;;一种新型环保高效反渗透阻垢剂[A];2008年中国精细化工协会水处理化学品行业年会论文集[C];2008年

2 王蓉蓉;陈浩;李建玺;姜国策;张小刚;郭焱;;海水循环冷却系统阻垢剂单体阻垢性能试验研究[A];2008年中国精细化工协会水处理化学品行业年会论文集[C];2008年

3 吉卫;;一种绿色环保高效膜用阻垢剂[A];膜分离技术在石油和化工行业中应用研讨会论文集[C];2006年

4 彭福兵;;“环境友好”可生化降解的新型增强型马来酸聚合物阻垢剂的研究[A];2013中国水处理技术研讨会暨第33届年会论文集[C];2013年

5 靳晓霞;王会;滕厚开;;有机膦类阻垢剂抑制硫酸钙垢行为的研究[A];2008中国水处理技术研讨会暨第28届年会论文集[C];2008年

6 霍宇凝;陆柱;;聚合物阻垢剂研究进展[A];’2001全国工业用水与废水处理技术交流会论文集暨水处理技术汇编[C];2001年

7 李凡修;辛焰;陈武;;共聚物类阻垢剂的研制进展[A];’2001全国工业用水与废水处理技术交流会论文集暨水处理技术汇编[C];2001年

8 霍宇凝;陆柱;;聚合物阻垢剂研究进展[A];中国土木工程学会水工业分会第四届理事会第一次会议论文集[C];2002年

9 周伟生;吕勇;齐登谷;;反渗透膜用阻垢剂的实验室评价[A];’2004全国水处理技术研讨会暨第24届年会论文集[C];2004年

10 闫岩;;硅垢阻垢剂及评价方法的研究现状[A];’2004全国水处理技术研讨会暨第24届年会论文集[C];2004年

相关重要报纸文章 前4条

1 葛军 于海龙;中铝山东企业研发“新型阻垢剂”达到国内先进水平[N];中国有色金属报;2009年

2 ;反渗透除污阻垢技术[N];科技日报;2006年

3 特约记者 刘宽胜;我压缩机阻垢剂跻身国际前列[N];中国化工报;2010年

4 特约记者 刘宽胜;国产碱性阻垢剂保装置低耗稳运[N];中国化工报;2012年

相关博士学位论文 前5条

1 孙咏红;聚环氧琥珀酸反渗透阻垢剂绿色化学研究[D];中南林业科技大学;2010年

2 周伟生;反渗透膜用药剂的制备及其性能研究[D];天津工业大学;2007年

3 李本高;炼化装置循环冷却水质特性与水处理效果的关系研究[D];石油化工科学研究院;2007年

4 曹生现;冷却水污垢对策评价与预测方法及装置研究[D];华北电力大学(河北);2009年

5 夏明珠;膦酰基羧酸的合成与性能[D];南京理工大学;2006年

相关硕士学位论文 前10条

1 昌诚;绿色膜用阻垢剂的制备与评价研究[D];山东建筑大学;2015年

2 张鑫;一种新型环境友好高效卤水阻垢剂[D];山东大学;2015年

3 梁兆燕;循环冷却水中聚合物的分析研究[D];山东大学;2015年

4 姜红静;环保型反渗透阻垢剂的复配及性能研究[D];河北工业大学;2008年

5 申战辉;低温多效蒸馏海水淡化专用阻垢剂的研制与性能评价[D];南京理工大学;2010年

6 冷曼希;新型无磷阻垢剂的合成及性能评价[D];西南石油大学;2010年

7 吴雁;水溶性固体阻垢剂的研究[D];西南石油学院;2003年

8 侯振宇;油井高钙、锶、钡环境下高效阻垢剂的制备[D];西北工业大学;2006年

9 何爱江;阻垢剂性能及机理研究[D];四川大学;2006年

10 王海凤;新型低磷反渗透膜阻垢剂的研制及性能研究[D];同济大学;2007年



本文编号:2138547

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/huaxuehuagong/2138547.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户a22e2***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com