纽带管内流体强化换热及抗垢特性研究
[Abstract]:As a kind of high efficiency heat transfer spoiler, tie is widely used in the fields of chemical equipment, such as enhanced heat transfer, scale prevention, fluid mixing and so on. Scholars at home and abroad have carried out a lot of research on fluid flow and enhanced heat transfer in the inner tube, but the enhanced heat transfer performance of the tie still needs to be further improved. In this paper, a trilateral tie is developed and simulated by Fluent 15.0, aiming at the problems of less flow conditions, poor comprehensive heat transfer enhancement and structural optimization of the tie tube. The characteristics of heat transfer and resistance in the tube under turbulent (Re=5000~30000) and laminar flow (Re=400~1500) conditions are compared with those of the circular tube. The results show that the comprehensive performance of the triangular-tie tube is better than that of the circular tube. Furthermore, the structural parameters of the tie tube are optimized from the following aspects: the number of the tie edges n, the torsion ratio yand the length m. Finally, the anti-fouling performance of the circular tube and the tie tube is simulated and analyzed. The conclusions are as follows: the numerical simulation results show that, The inner tie tube can make the fluid produce spiral flow, induce the fluid to produce radial and tangential flow away from the axis, and thus aggravate the mixing of the near wall fluid with the mainstream fluid, and reduce the velocity and temperature boundary layer of the fluid. The heat transfer from the tube wall to the fluid in the tube increases the convection heat transfer coefficient of the fluid in the tube wall. The simulation results under turbulent conditions show that the Nu of the triangulated tie tube is larger, the heat transfer performance of the grid tie tube and the ordinary tie tube is equivalent to that of the Nu, and the resistance coefficient f of the tie tube is in order from high to low: the grid tie, the trilateral tie and the ordinary tie. The comprehensive performance evaluation factor 畏 of trilateral tie tube is higher than that of other tie tubes. The optimization results of the structural parameters of the tie tube show that Nu and f increase with the increase of the number and length of the tie edges, and decrease with the increase of the torsion ratio. The torsion ratio is 2.0 and the side length m=9mm trilateral tie tube has better comprehensive performance, and the comprehensive performance evaluation factor 畏 1.33 is higher than that of circular tube and ordinary tie tube by 11.9and 33.2and 5.475.98, respectively. The simulation results under laminar flow condition show that the more Nu and f increase with the increase of the number of edges and the length of the edges, and the decrease with the increase of torsion ratio, the simulation results show that the comprehensive performance of the trilateral tie tube with yyong 2.0mm is better than that of the tube with 9mm. The comprehensive performance evaluation factor 畏 is 4.96. The study on the anti-fouling performance of the circular pipe and the tie tube shows that the spiral flow of the fluid in the tie tube scour the wall of the pipe, which makes the fouling distribution of Ca Co3 particles more uniform, and it is not easy to deposit in the heat transfer pipe, and its anti-fouling performance is obviously better than that of the circular tube. The calculated non-uniform coefficient of particle fouling of round tube, common tie tube and trilateral tie tube is (CV) of 8.72and 3.71and 3.22 respectively. The smaller the non-uniformity coefficient is, the better the anti-fouling performance of tie tube is. By comparing the characteristics of fouling distribution between 5um 10um and 20um particles, it is concluded that the diameter of fouling particles affects the anti-fouling performance of heat transfer tubes. The larger the particle diameter is, the easier the heat exchanger tube is to scale in the range of the studied particle diameter.
【学位授予单位】:郑州大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:TQ055.81
【相似文献】
相关期刊论文 前10条
1 殷立勇;张润来;;一种新型强化换热结构[J];化学工程与装备;2010年12期
2 胡枭;夏德宏;任玲;郭美荣;;蜂巢式金属扩展表面强化换热插件的开发[J];中国有色冶金;2012年06期
3 霍喜军;刘巨保;张强;;内外流动介质下强化换热管耦合传热数值模拟[J];石油化工设备;2011年03期
4 J.Eftekhar ,宋建峰;石蜡贮热系统中的强化换热[J];粮油加工与食品机械;1985年12期
5 闫云飞;刘科;张力;;强化换热凹槽管内流动与传热数值模拟[J];化工进展;2010年12期
6 张俊涛,,周筠清;原理性涡旋强化换热装置的传热性能研究[J];冶金能源;1995年06期
7 王玉;王涛;;4种常用强化换热管综合性能研究综述[J];管道技术与设备;2006年05期
8 张俊涛,周筠清;涡旋强化换热装置的换热及流动阻力的实验研究[J];河北理工学院学报;1995年03期
9 苏静;高宇恩;齐向红;;凝汽器强化换热防结垢技术的应用[J];山东冶金;2010年05期
10 夏莉;张鹏;王如竹;;套管式相变储能单元的强化换热[J];化工学报;2011年S1期
相关会议论文 前6条
1 张同荣;欧阳新萍;姜帆;司少娟;;斜翅型冷凝强化换热管传热性能的实验研究[A];走中国创造之路——2011中国制冷学会学术年会论文集[C];2011年
2 贾臻;龚自力;邱金荣;;核级换热器强化换热方式对比与选择[A];中国核科学技术进展报告——中国核学会2009年学术年会论文集(第一卷·第3册)[C];2009年
3 陈建红;欧阳新萍;熊高鹏;姜涛;薛娜;;几种管外凝结强化管的传热试验及分析[A];中国制冷学会2007学术年会论文集[C];2007年
4 陶国龙;;基于降压核态沸腾相变一体化强化换热技术的脱硫工艺节水节能方案[A];第十届中国科协年会论文集(二)[C];2008年
5 祁小松;张华;武俊梅;;纵向涡发生器强化传热的研究历程及进展[A];中国制冷学会2009年学术年会论文集[C];2009年
6 祁小松;张华;武俊梅;;纵向涡发生器的强化传热作用与研究进展[A];上海市制冷学会2009年学术年会论文集[C];2009年
相关博士学位论文 前5条
1 郭剑;管内强化换热的理论和实验研究[D];华中科技大学;2012年
2 孟继安;基于场协同理论的纵向涡强化换热技术及其应用[D];清华大学;2003年
3 司洪宇;液化天然气冷能利用过程中强化换热技术及水平管内气液两相流体激振机理的研究[D];中国海洋大学;2011年
4 陶于兵;CO_2家用空调系统实验研究及换热器强化换热数值模拟[D];西安交通大学;2008年
5 马可;基于热管技术的磨削弧区强化换热基础研究[D];南京航空航天大学;2011年
相关硕士学位论文 前10条
1 蔡楠;通道内非对称布置纵向涡发生器强化换热分析[D];河北工业大学;2014年
2 李亚飞;纽带管内流体强化换热及抗垢特性研究[D];郑州大学;2015年
3 贾宝光;新型内肋强化换热管综合换热性能的数值研究[D];郑州大学;2015年
4 王忠会;场协同理论指导下的强化换热[D];华北电力大学(北京);2003年
5 李燕;凹槽通道中层流脉动流动强化换热的实验研究[D];大连理工大学;2013年
6 马良;偏心旋流管强化换热的数值分析[D];华中科技大学;2013年
7 许洁;以空气为介质的电场强化换热理论与数值计算[D];东华大学;2010年
8 杨炳昌;层流脉动流动强化换热的实验研究[D];大连理工大学;2012年
9 冯知正;平直与柱面翼涡发生器冲孔强化换热特性实验研究[D];华北电力大学;2013年
10 崔丽红;螺旋折流板换热器强化换热管内流动与传热特性的研究[D];西安建筑科技大学;2013年
本文编号:2194503
本文链接:https://www.wllwen.com/kejilunwen/huaxuehuagong/2194503.html