当前位置:主页 > 科技论文 > 化学工程论文 >

中温固体氧化物燃料电池阴极和电解质材料的性能研究

发布时间:2018-09-09 18:44
【摘要】:固体氧化物燃料电池(SOFC)是一种通过电化学反应将化学能直接转化为电能的电化学装置,具有能量转换率高、燃料适应性强和环境友好等优点。传统的高温SOFC需要在1000oC左右工作,如此高的操作温度会导致严重的界面反应和电极烧结退化等问题,因此将工作温度降至中温(500-800oC)是目前SOFC发展的大势所趋。但是,电解质的欧姆电阻、电极(特别是阴极)的界面极化电阻会随着SOFC运行温度的降低而显著增大,严重制约其发展。因此,必须加快开发各种新型的阴极和电解质材料,从而加速SOFC的实用化进程。本论文正是基于这一点,对SOFC的新型阴极和电解质材料展开深入探索和研究。本论文紧紧围绕这两个方面开展工作,一方面从开发高催化活性、与相邻材料有良好的相容性和稳定性,适合作为中温SOFC的阴极材料入手,在深入研究新型阴极材料的基本物化性能的基础上,成功将其应用于中温SOFC,并取得了较好的电池性能。另一方面,则是通过二价和三价离子共掺杂对氧化铈基电解质的性能进行优化,系统研究共掺杂对氧化铈基电解质的烧结性能、氧空位浓度和离子电导率等性能的影响规律,并将其组装成单电池,其单电池在中温条件下也展示了良好的功率输出和开路电压。首先,考虑到Ba Bi0.05Co0.8Nb0.15O3-δ(BBCN)具有优异的氧透过性能,这对其作为SOFC阴极材料是非常有利的,因此采用固相法制备了立方钙钛矿结构的BBCN及其复合阴极材料,考察其作为中温SOFC阴极的可行性。XRD分析表明BBCN阴极与Sm0.2Ce0.8O1.9(SDC)电解质具有良好的化学相容性。通过XPS结果表明BBCN中各金属离子的氧化态为Co4+/Co3+、Bi3+、Ba2+和Nb5+,其中Co4+/3+混合价态的存在对阴极的电导率和电化学性能起着关键作用。BBCN阴极在100-800oC温度范围内经历了半导体到金属导电机制的转变。其在30-850oC温度范围内的平均热膨胀系数(TEC)为19.60×10-6K-1。采用丝网印刷法制备了BBCN/SDC/BBCN对称电池和Ni O-SDC/SDC/BBCN电解质支撑型单电池,BBCN的极化阻抗(Rp)和功率密度在800oC时分别为0.047Ωcm2和507 m W cm-2。为了进一步改善BBCN阴极的性能,我们制备了BBCN-x SDC复合阴极,并确定SDC的最佳复合比例为50%,在800oC时,以BBCN-50SDC为阴极的单电池功率密度为596 m W cm-2。单电池性能测试表明,电解质离子相的复合是进一步提高BBCN阴极性能的有效手段。随后,为了降低Co基阴极材料的热膨胀系数和成本,我们采用EDTA-柠檬酸联合络合法制备了无钴基双钙钛矿阴极Ln Ba0.5Sr0.5CuB2O5+δ(Ln=Pr,Nd;简称:PBSC和NBSC)。XRD研究表明,PBSC和NBSC为四方结构。XPS结果表明PBSC和NBSC样品中各金属离子化合价态为Pr4+/Pr3+、Nd3+、Ba2+、Sr2+和Cu2+/Cu+,过渡族金属离子混合价态的存在有利于激发P型小极化子导电的载流子浓度。二者的电导率都在450 oC时经历由半导体导电到金属导电机制的转变,且PBSC的电导率大于NBSC。PBSC和NBSC在30-950oC温度范围内的TEC分别为14.2×10-6 K-1和14.6×10-6K-1,非常接近LSGM和SDC等常用电解质的TEC。PBSC和NBSC的Rp在800°C时分别为0.0439Ωcm2和0.0568Ωcm2。以PBSC和NBSC为阴极的LSGM电解质(0.3 mm厚)支撑型单电池在850oC时的最大功率密度分别达到681 m W cm-2和651 m W cm-2。以PBSC为阴极的单电池比以NBSC为阴极的单电池功率密度略大,这一结果与材料的电导率和极化阻抗测试结果规律相一致。在K2Ni F4结构中,Ga在B位的过量存在可以显著提高材料的氧离子传导率,因此我们采用溶胶-凝胶法制备了Pr2Ni0.75CuB0.25Ga0.05O4+δ(PNCG)阴极材料。XRD结果表明,PNCG的晶体结构为四方晶系,说明超量的Ga进入到了Pr2Ni O4晶体结构中。PNCG阴极和Gd0.2Ce0.8O1.9(GDC)电解质混合粉体经900oC烧结5 h后,虽然PNCG和GDC的衍射峰发生微小偏移,但是它们保持了各自的晶体结构,没有第三相生成。PNCG样品在100-850oC范围内的最大电导率值为9 S cm-1。其在30-850oC温度区间内的平均TEC为12.72×10-6K-1。PNCG阴极在800oC时的极化阻抗为0.105Ωcm2。以PNCG为阴极的GDC电解质(0.3 mm厚)支撑型单电池在800°C、750°C、700°C和650°C时的功率密度分别为371,242,183和119 m W cm-2,以上研究结果表明PNCG是一种有潜力的阴极材料。在K2Ni F4结构中,A位La、Pr共掺杂能够提高AO岩盐层的氧离子迁移率,因此我们制备了(Pr0.9La0.1)2(Ni0.74Cu0.21Ga0.05)O4+δ(PLNCG)阴极。XRD表明PLNCG为四方结构,空间群为I4/mmm。PLNCG的电导率在100-850oC温度范围内经历了半导体(0T?s??)到金属(0T?sá?)导电性的转变。TGA和DTA结果表明PLNCG在整个升温过程中没有发生相变,具有较好的热稳定性。PLNCG在30-850oC温度区间内的平均TEC为12.45×10-6K-1,十分接近在同一温度范围内的GDC电解质的TEC(12.39×10-6K-1)。PLNCG阴极在800oC时的极化阻抗为0.037Ωcm2。GDC(0.3 mm厚)电解质支撑型单电池在800oC时的功率密度为407 m W cm-2。PLNCG阴极取得了较好的电化学性能,更重要的是它具有与电解质GDC几乎相同的热膨胀系数,可以避免热循环过程中电池组件间的分层劈裂等问题,因此PLNCG阴极可以作为中温SOFC的候选材料。由于二价、三价离子共掺杂可以提高Ce O2基电解质的烧结性能和离子电导率,因此采用甘氨酸-硝酸盐法(GNP)制备了La3+、Sm3+、Ca2+共掺杂的Ce O2基电解质粉体。XRD测试结果表明Ce0.8La0.03SmB0.17-xCax O2-δ(x=0.00,0.02,0.04,0.06,0.08)样品均为立方萤石结构,在1400oC烧结10 h后晶格常数随着掺杂量的增加呈线性增长,符合Vegard规则,说明La2O3、Sm2O3和Ca O在氧化铈中完全固溶。拉曼测试结果表明,Ca2+掺杂浓度的增加可使Ce O2基电解质内的氧空位浓度逐渐增多。SEM结果表明,少量Ca的掺杂可以提高氧化铈基电解质的致密程度,这主要归因于Ca离子的有效助烧结作用。阻抗测试结果表明当Ca2+的掺杂量为0.02时其离子电导率达到最大,在800oC时为0.0735S cm-1。单电池测试结果显示,Ca掺杂量为0.02时其单电池输出性能比未掺杂的Ce0.8La0.03Sm0.17O2-δ单电池输出性能有明显提高,且以x=0.02为电解质的电池开路电压最大,在700oC、650oC和600oC分别为0.863 V、0.893 V和0.906 V。以上结果表明,La3+、Sm3+、Ca2+的共掺杂效应是存在的,但是高温还原气氛下Ce的还原现象仍然存在,因此要制备高活性的Ce O2基电解质材料还需要更多更细致的研究工作。
[Abstract]:Solid oxide fuel cell (SOFC) is an electrochemical device that directly converts chemical energy into electrical energy by electrochemical reaction. It has the advantages of high energy conversion rate, strong fuel adaptability and environmental friendliness. However, the ohmic resistance of electrolyte and the interfacial polarization resistance of electrode (especially cathode) will increase significantly with the decrease of operating temperature of SOFC, which seriously restricts its development. This paper is based on this point to explore and study the new cathode and electrolyte materials of SOFC. This paper focuses on these two aspects of work, on the one hand, from the development of high catalytic activity, good compatibility and stability with adjacent materials, suitable for medium-temperature SOFC. Starting with the cathode materials, based on the in-depth study of the basic physical and chemical properties of the new cathode materials, the new cathode materials were successfully applied to the medium-temperature SOFC and achieved good battery performance. On the other hand, the performance of ceria-based electrolyte was optimized by Co-doping of divalent and trivalent ions, and the ceria-based electrolysis was systematically studied by co-doping. The effect of sintering properties, oxygen vacancy concentration and ionic conductivity on the performance of the batteries was studied. The single cell was assembled into a single cell. The single cell also exhibited good power output and open circuit voltage at medium temperature. Firstly, considering the excellent oxygen permeability of BaBi 0.05 Co 0.8 Nb 0.15O 3-delta (BBCN), it was considered that Ba Bi 0.05 Co 0.8 Nb 0.15O 3-delta (BBCN) was a non-SOFC cathode material. XRD analysis showed that BBCN cathode and Sm0.2Ce0.8O1.9 (SDC) electrolyte had good chemical compatibility. XPS results showed that the oxidation state of metal ions in BBCN was Co4 + / Co3 +, Bi3 +. BBCN cathode undergoes a transition from semiconductor to metal conduction mechanism in the temperature range of 100-800oC. Its average thermal expansion coefficient (TEC) in the temperature range of 30-850oC is 19.60 *10-6K-1. BBCN was prepared by screen printing method. The polarization impedance (Rp) and power density of CN/SDC/BBCN symmetrical cell and Ni-SDC/SDC/BBCN electrolyte supported single cell were 0.047_cm 2 and 507 m W cm-2 at 800 oC, respectively. To further improve the performance of BBCN cathode, BBCN-x SDC composite cathode was prepared and the optimum composite ratio of SDC was 50% at 800 oC and BBCN-50 SDC at 800 oC. The power density of the single cell for the cathode is 596 m W cm-2. The performance test of the single cell shows that the composite of the electrolyte ion phase is an effective means to further improve the performance of the BBCN cathode. Then, in order to reduce the thermal expansion coefficient and cost of the Co-based cathode material, we prepared the Co-free Perovskite Cathode Ln B by EDTA-citric acid method. XRD studies show that PBSC and NBSC are tetragonal. XPS results show that the valence states of metal ions in PBSC and NBSC samples are Pr4+/Pr3+, Nd3+, Ba2+, Sr2+ and Cu2+/Cu+. The existence of mixed valence states of transition group metal ions is favorable to excite the carrier concentration of small polaron conduction of P type. The conductivity of PBSC is higher than that of NBSC. The conductivity of PBSC and NBSC is 14.2 *10-6 K-1 and 14.6 *10-6 K-1 respectively in the temperature range of 30-950 oC. The Rp of PBSC and NBSC is very close to that of TEC. PBSC and NBSC, which are commonly used electrolytes such as LSGM and SDC. M2. The maximum power density of LSGM electrolyte (0.3 m m thick) supported single cell with PBSC and NBSC as cathode at 850 oC was 681 m W cm-2 and 651 m W cm-2, respectively. The power density of single cell with PBSC as cathode was slightly higher than that of single cell with NBSC as cathode, which was consistent with the law of material conductivity and polarization impedance measurement. Pr2Ni0.75CuB0.25Ga0.05O4+delta (PNCG) cathode materials were prepared by sol-gel method. XRD results show that the crystal structure of PNCG is tetragonal, indicating that the excess of Ga in the B position can significantly improve the oxygen ion conductivity of the materials. Although the diffraction peaks of PNCG and GDC shifted slightly after sintering for 5 h at 900oC, the mixed electrolyte powders of. 2Ce 0.8O 1.9 (GDC) retained their respective crystal structures and did not form the third phase. The maximum conductivity of PNCG samples ranged from 100 to 850oC was 9 S cm-1. The average TEC in the range of 30-850oC was 12.72 *10-6K-1.PNCG. The polarization impedance of the cathode at 800oC is 0.105_cm 2. The power densities of the GDC electrolyte (0.3 m m thick) supported single cell with PNCG cathode at 800 C, 750 C, 700 C and 650 C are 371, 242, 183 and 119 m W cm - 2, respectively. These results show that PNCG is a potential cathode material. In the structure of K2Ni F4, A-La and Pr can be co-doped. In order to improve the mobility of oxygen ions in AO rock salt beds, we have prepared (Pr0.9La0.1) 2 (Ni0.74Cu0.21Ga0.05) O4+delta (PLNCG) cathode. XRD shows that PLNCG has a tetragonal structure, and the conductivity of the space group is I4/mmm. The average TEC of PLNCG is 12.45 *10-6K-1 in the temperature range of 30-850oC, which is very close to that of GDC electrolyte (12.39 *10-6K-1) in the same temperature range. The polarization impedance of PLNCG cathode at 800oC is 0.037_cm 2.GDC (0.3 mm thick) for electrolyte supported single cell at 8.3 mm thick. The PLNCG cathode can be used as a candidate material for medium-temperature SOFC because of its good electrochemical performance at 00oC power density of 407 m W cm-2. The more important thing is that it has almost the same thermal expansion coefficient as the electrolyte GDC and can avoid the delamination splitting between cell modules during thermal cycle. Ion co-doping can improve the sintering performance and ionic conductivity of CeO_2-based electrolyte. Therefore, La_3+, Sm_3+, Ca_2+ co-doped CeO_2-based electrolyte powders were prepared by glycine-nitrate method (GNP). XRD results show that Ce_0.8La_0.03SmB_0.17-xCa_x O_2-delta (x=0.00, 0.02, 0.04, 0.06, 0.08) samples are cubic fluorite structure and sintered at 1400 oC. The lattice constant increases linearly with the increase of doping content after 10 h, which conforms to Vegard's rule. It shows that La2O3, Sm2O3 and Ca O are completely solid soluble in cerium oxide. Raman test results show that the oxygen vacancy concentration in Ce O2-based electrolyte increases gradually with the increase of Ca2+ doping concentration. SEM results show that a small amount of Ca doping can increase the concentration of cerium oxide. The densification of the electrolyte is mainly attributed to the effective sintering aid of Ca ions. The results of impedance measurement show that the ionic conductivity reaches the maximum when Ca 2+ doping is 0.02 and 0.0735S cm-1 at 800oC. The output performance of the single cell is improved obviously, and the open circuit voltage of the cell with x=0.02 as electrolyte is the highest. The results show that the co-doping effect of La3+, Sm3+, Ca2+ exists in 700oC, 650oC and 600oC, respectively, 0.863 V, 0.893 V and 0.906 V. However, the reduction of Ce still exists in high temperature reduction atmosphere, so it is necessary to prepare highly active Ce O2. More detailed research is needed for basic electrolyte materials.
【学位授予单位】:吉林大学
【学位级别】:博士
【学位授予年份】:2016
【分类号】:TM911.4

【相似文献】

中国期刊全文数据库 前10条

1 徐旭东;田长安;尹奇异;程继海;;固体氧化物燃料电池电解质材料的发展趋势[J];硅酸盐通报;2011年03期

2 魏丽,陈诵英,王琴;中温固体氧化物燃料电池电解质材料的研究进展[J];稀有金属;2003年02期

3 吴国军;李松波;;固体氧化物燃料电池铈基电解质的制备与表征[J];内蒙古石油化工;2007年11期

4 史可顺;;中温固体氧化物燃料电池电解质材料及其制备工艺的研究发展趋势[J];硅酸盐学报;2008年11期

5 谭智实;;可使离子导电率提高近1亿倍的超晶格电解质材料[J];功能材料信息;2009年01期

6 谢富丞;王诚;毛宗强;;低温固体氧化物燃料电池的复合电解质材料[J];中国工程科学;2013年02期

7 杨天让;赵海雷;韩载浩;卢瑶;;硅基磷灰石电解质材料的研究进展[J];电池;2013年02期

8 陈增来;超高多孔电解质材料[J];电子元件与材料;1991年05期

9 李勇;邵刚勤;段兴龙;王天国;;固体氧化物燃料电池电解质材料的研究进展[J];硅酸盐通报;2006年01期

10 唐安江;关星宇;高姗姗;杨俊艺;;双掺杂铈基电解质材料的研究[J];化工新型材料;2010年10期

中国重要会议论文全文数据库 前9条

1 刘晓梅;陈晗;苏文挥;;固体氧化物燃料电池复合电解质的性能研究[A];2004年中国材料研讨会论文摘要集[C];2004年

2 黄建军;万松;王凡;汝丽丽;江石寿;朱耿锋;萧静;;磷灰石型硅酸镧电解质材料合成及其涂层制备[A];第十六届全国等离子体科学技术会议暨第一届全国等离子体医学研讨会会议摘要集[C];2013年

3 梁营;王世忠;吴玲丽;;镓酸镧基电解质的电导特性及其对相应电极的影响[A];第十二届中国固态离子学学术会议论文集稀土专辑[C];2004年

4 张跃兴;胡琳娜;彭会芬;郭振华;;新型燃料电池电解质材料的制备及研究[A];第六届中国功能材料及其应用学术会议论文集(4)[C];2007年

5 刘晓梅;梁路光;陈晗;姜向前;苏文辉;;稀土氧化物中温电解质的制备及性能研究[A];“加入WTO和科学技术与吉林经济发展——机遇·挑战·责任”吉林省第二届科学技术学术年会论文集(上)[C];2002年

6 刘荣辉;马文会;王华;杨斌;戴永年;;LaGaO_3基电解质材料的合成及其与新型电极材料的相容性能研究[A];中国稀土学会第一届青年学术会议论文集[C];2005年

7 景翠;项礼;张秀荣;;溶胶-凝胶法制备Mg掺杂的磷灰石型硅酸镧电解质材料[A];2011中国材料研讨会论文摘要集[C];2011年

8 韩敏芳;李伯涛;彭苏萍;刘敬;;掺杂ZrO_2基复合电解质材料性能[A];复合材料:生命、环境与高技术——第十二届全国复合材料学术会议论文集[C];2002年

9 张鸿;王申存;李璐君;李志成;;氧化铟-稀土氧化物共掺CeO_2基导电电解质材料的制备与表征[A];第六届中国功能材料及其应用学术会议论文集(7)[C];2007年

中国重要报纸全文数据库 前2条

1 中国经济导报记者 刘宝亮;用3-5年时间打造中国电池行业的“巨无霸”[N];中国经济导报;2014年

2 邓小国 记者 傅江平;TBT评议成为应对壁垒有效手段[N];中国质量报;2010年

中国博士学位论文全文数据库 前10条

1 孟祥伟;中温固体氧化物燃料电池阴极和电解质材料的性能研究[D];吉林大学;2016年

2 刘巍;固态氧离子电解质材料的多维结构制备与性能[D];清华大学;2013年

3 田瑞芬;掺杂氧化铈基中温固体氧化物燃料电池电解质材料的制备与表征[D];中国科学技术大学;2009年

4 尹广超;磷灰石结构硅/锗酸镧电解质材料的制备与性能研究[D];吉林大学;2014年

5 李彬;氧化铈基和磷灰石型硅酸镧基电解质材料的研究[D];清华大学;2010年

6 钱婧;中低温固体氧化物燃料电池双层电解质的脉冲激光制备及电化学研究[D];中国科学技术大学;2014年

7 翟玉玲;掺杂LaGaO_3电解质的制备与性能研究[D];华中科技大学;2007年

8 徐丹;中温固体氧化物燃料电池CeO_2基复合电解质材料的制备和性能研究[D];吉林大学;2008年

9 沙雪清;双掺杂CeO_2和LaGaO_3电解质的制备及性能研究[D];哈尔滨工业大学;2007年

10 柳勇;中温固体氧化物燃料电池电解质及相关材料和性能的研究[D];天津大学;2012年

中国硕士学位论文全文数据库 前10条

1 范悦;(SDC/YSZ)_N超晶格电解质的制备及性能[D];内蒙古大学;2015年

2 李罗丹;质子型BaCe_(0.8)Sm_xY_(0.2-x)O_(3-δ)基电解质材料的制备及其性能研究[D];南京理工大学;2015年

3 时哲;含磺酸锂聚酰胺电解质的制备及性能研究[D];哈尔滨工业大学;2015年

4 田越;新型中温固体氧化物燃料电池电解质材料的制备与性能研究[D];大连海事大学;2016年

5 刘丽伟;Bi_2O_3/YSZ和Bi_2O_3/YbSZ电解质的合成制备和表征[D];浙江大学;2016年

6 吴国春;低温固体氧化物燃料电池复合电解质性能优化[D];太原理工大学;2016年

7 曹敏;中温固体氧化物燃料电池电解质材料的研究[D];南京航空航天大学;2006年

8 张哲;固体氧化物燃料电池电解质材料的制备与性能研究[D];中南大学;2011年

9 姜晓丽;铈钪共掺杂锆基电解质材料的制备[D];内蒙古科技大学;2011年

10 李晶晶;钆掺杂氧化铈电解质材料的制备及电化学性能研究[D];哈尔滨工业大学;2014年



本文编号:2233248

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/huaxuehuagong/2233248.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户130a4***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com