中温固体氧化物燃料电池阴极和电解质材料的性能研究
[Abstract]:Solid oxide fuel cell (SOFC) is an electrochemical device that directly converts chemical energy into electrical energy by electrochemical reaction. It has the advantages of high energy conversion rate, strong fuel adaptability and environmental friendliness. However, the ohmic resistance of electrolyte and the interfacial polarization resistance of electrode (especially cathode) will increase significantly with the decrease of operating temperature of SOFC, which seriously restricts its development. This paper is based on this point to explore and study the new cathode and electrolyte materials of SOFC. This paper focuses on these two aspects of work, on the one hand, from the development of high catalytic activity, good compatibility and stability with adjacent materials, suitable for medium-temperature SOFC. Starting with the cathode materials, based on the in-depth study of the basic physical and chemical properties of the new cathode materials, the new cathode materials were successfully applied to the medium-temperature SOFC and achieved good battery performance. On the other hand, the performance of ceria-based electrolyte was optimized by Co-doping of divalent and trivalent ions, and the ceria-based electrolysis was systematically studied by co-doping. The effect of sintering properties, oxygen vacancy concentration and ionic conductivity on the performance of the batteries was studied. The single cell was assembled into a single cell. The single cell also exhibited good power output and open circuit voltage at medium temperature. Firstly, considering the excellent oxygen permeability of BaBi 0.05 Co 0.8 Nb 0.15O 3-delta (BBCN), it was considered that Ba Bi 0.05 Co 0.8 Nb 0.15O 3-delta (BBCN) was a non-SOFC cathode material. XRD analysis showed that BBCN cathode and Sm0.2Ce0.8O1.9 (SDC) electrolyte had good chemical compatibility. XPS results showed that the oxidation state of metal ions in BBCN was Co4 + / Co3 +, Bi3 +. BBCN cathode undergoes a transition from semiconductor to metal conduction mechanism in the temperature range of 100-800oC. Its average thermal expansion coefficient (TEC) in the temperature range of 30-850oC is 19.60 *10-6K-1. BBCN was prepared by screen printing method. The polarization impedance (Rp) and power density of CN/SDC/BBCN symmetrical cell and Ni-SDC/SDC/BBCN electrolyte supported single cell were 0.047_cm 2 and 507 m W cm-2 at 800 oC, respectively. To further improve the performance of BBCN cathode, BBCN-x SDC composite cathode was prepared and the optimum composite ratio of SDC was 50% at 800 oC and BBCN-50 SDC at 800 oC. The power density of the single cell for the cathode is 596 m W cm-2. The performance test of the single cell shows that the composite of the electrolyte ion phase is an effective means to further improve the performance of the BBCN cathode. Then, in order to reduce the thermal expansion coefficient and cost of the Co-based cathode material, we prepared the Co-free Perovskite Cathode Ln B by EDTA-citric acid method. XRD studies show that PBSC and NBSC are tetragonal. XPS results show that the valence states of metal ions in PBSC and NBSC samples are Pr4+/Pr3+, Nd3+, Ba2+, Sr2+ and Cu2+/Cu+. The existence of mixed valence states of transition group metal ions is favorable to excite the carrier concentration of small polaron conduction of P type. The conductivity of PBSC is higher than that of NBSC. The conductivity of PBSC and NBSC is 14.2 *10-6 K-1 and 14.6 *10-6 K-1 respectively in the temperature range of 30-950 oC. The Rp of PBSC and NBSC is very close to that of TEC. PBSC and NBSC, which are commonly used electrolytes such as LSGM and SDC. M2. The maximum power density of LSGM electrolyte (0.3 m m thick) supported single cell with PBSC and NBSC as cathode at 850 oC was 681 m W cm-2 and 651 m W cm-2, respectively. The power density of single cell with PBSC as cathode was slightly higher than that of single cell with NBSC as cathode, which was consistent with the law of material conductivity and polarization impedance measurement. Pr2Ni0.75CuB0.25Ga0.05O4+delta (PNCG) cathode materials were prepared by sol-gel method. XRD results show that the crystal structure of PNCG is tetragonal, indicating that the excess of Ga in the B position can significantly improve the oxygen ion conductivity of the materials. Although the diffraction peaks of PNCG and GDC shifted slightly after sintering for 5 h at 900oC, the mixed electrolyte powders of. 2Ce 0.8O 1.9 (GDC) retained their respective crystal structures and did not form the third phase. The maximum conductivity of PNCG samples ranged from 100 to 850oC was 9 S cm-1. The average TEC in the range of 30-850oC was 12.72 *10-6K-1.PNCG. The polarization impedance of the cathode at 800oC is 0.105_cm 2. The power densities of the GDC electrolyte (0.3 m m thick) supported single cell with PNCG cathode at 800 C, 750 C, 700 C and 650 C are 371, 242, 183 and 119 m W cm - 2, respectively. These results show that PNCG is a potential cathode material. In the structure of K2Ni F4, A-La and Pr can be co-doped. In order to improve the mobility of oxygen ions in AO rock salt beds, we have prepared (Pr0.9La0.1) 2 (Ni0.74Cu0.21Ga0.05) O4+delta (PLNCG) cathode. XRD shows that PLNCG has a tetragonal structure, and the conductivity of the space group is I4/mmm. The average TEC of PLNCG is 12.45 *10-6K-1 in the temperature range of 30-850oC, which is very close to that of GDC electrolyte (12.39 *10-6K-1) in the same temperature range. The polarization impedance of PLNCG cathode at 800oC is 0.037_cm 2.GDC (0.3 mm thick) for electrolyte supported single cell at 8.3 mm thick. The PLNCG cathode can be used as a candidate material for medium-temperature SOFC because of its good electrochemical performance at 00oC power density of 407 m W cm-2. The more important thing is that it has almost the same thermal expansion coefficient as the electrolyte GDC and can avoid the delamination splitting between cell modules during thermal cycle. Ion co-doping can improve the sintering performance and ionic conductivity of CeO_2-based electrolyte. Therefore, La_3+, Sm_3+, Ca_2+ co-doped CeO_2-based electrolyte powders were prepared by glycine-nitrate method (GNP). XRD results show that Ce_0.8La_0.03SmB_0.17-xCa_x O_2-delta (x=0.00, 0.02, 0.04, 0.06, 0.08) samples are cubic fluorite structure and sintered at 1400 oC. The lattice constant increases linearly with the increase of doping content after 10 h, which conforms to Vegard's rule. It shows that La2O3, Sm2O3 and Ca O are completely solid soluble in cerium oxide. Raman test results show that the oxygen vacancy concentration in Ce O2-based electrolyte increases gradually with the increase of Ca2+ doping concentration. SEM results show that a small amount of Ca doping can increase the concentration of cerium oxide. The densification of the electrolyte is mainly attributed to the effective sintering aid of Ca ions. The results of impedance measurement show that the ionic conductivity reaches the maximum when Ca 2+ doping is 0.02 and 0.0735S cm-1 at 800oC. The output performance of the single cell is improved obviously, and the open circuit voltage of the cell with x=0.02 as electrolyte is the highest. The results show that the co-doping effect of La3+, Sm3+, Ca2+ exists in 700oC, 650oC and 600oC, respectively, 0.863 V, 0.893 V and 0.906 V. However, the reduction of Ce still exists in high temperature reduction atmosphere, so it is necessary to prepare highly active Ce O2. More detailed research is needed for basic electrolyte materials.
【学位授予单位】:吉林大学
【学位级别】:博士
【学位授予年份】:2016
【分类号】:TM911.4
【相似文献】
中国期刊全文数据库 前10条
1 徐旭东;田长安;尹奇异;程继海;;固体氧化物燃料电池电解质材料的发展趋势[J];硅酸盐通报;2011年03期
2 魏丽,陈诵英,王琴;中温固体氧化物燃料电池电解质材料的研究进展[J];稀有金属;2003年02期
3 吴国军;李松波;;固体氧化物燃料电池铈基电解质的制备与表征[J];内蒙古石油化工;2007年11期
4 史可顺;;中温固体氧化物燃料电池电解质材料及其制备工艺的研究发展趋势[J];硅酸盐学报;2008年11期
5 谭智实;;可使离子导电率提高近1亿倍的超晶格电解质材料[J];功能材料信息;2009年01期
6 谢富丞;王诚;毛宗强;;低温固体氧化物燃料电池的复合电解质材料[J];中国工程科学;2013年02期
7 杨天让;赵海雷;韩载浩;卢瑶;;硅基磷灰石电解质材料的研究进展[J];电池;2013年02期
8 陈增来;超高多孔电解质材料[J];电子元件与材料;1991年05期
9 李勇;邵刚勤;段兴龙;王天国;;固体氧化物燃料电池电解质材料的研究进展[J];硅酸盐通报;2006年01期
10 唐安江;关星宇;高姗姗;杨俊艺;;双掺杂铈基电解质材料的研究[J];化工新型材料;2010年10期
中国重要会议论文全文数据库 前9条
1 刘晓梅;陈晗;苏文挥;;固体氧化物燃料电池复合电解质的性能研究[A];2004年中国材料研讨会论文摘要集[C];2004年
2 黄建军;万松;王凡;汝丽丽;江石寿;朱耿锋;萧静;;磷灰石型硅酸镧电解质材料合成及其涂层制备[A];第十六届全国等离子体科学技术会议暨第一届全国等离子体医学研讨会会议摘要集[C];2013年
3 梁营;王世忠;吴玲丽;;镓酸镧基电解质的电导特性及其对相应电极的影响[A];第十二届中国固态离子学学术会议论文集稀土专辑[C];2004年
4 张跃兴;胡琳娜;彭会芬;郭振华;;新型燃料电池电解质材料的制备及研究[A];第六届中国功能材料及其应用学术会议论文集(4)[C];2007年
5 刘晓梅;梁路光;陈晗;姜向前;苏文辉;;稀土氧化物中温电解质的制备及性能研究[A];“加入WTO和科学技术与吉林经济发展——机遇·挑战·责任”吉林省第二届科学技术学术年会论文集(上)[C];2002年
6 刘荣辉;马文会;王华;杨斌;戴永年;;LaGaO_3基电解质材料的合成及其与新型电极材料的相容性能研究[A];中国稀土学会第一届青年学术会议论文集[C];2005年
7 景翠;项礼;张秀荣;;溶胶-凝胶法制备Mg掺杂的磷灰石型硅酸镧电解质材料[A];2011中国材料研讨会论文摘要集[C];2011年
8 韩敏芳;李伯涛;彭苏萍;刘敬;;掺杂ZrO_2基复合电解质材料性能[A];复合材料:生命、环境与高技术——第十二届全国复合材料学术会议论文集[C];2002年
9 张鸿;王申存;李璐君;李志成;;氧化铟-稀土氧化物共掺CeO_2基导电电解质材料的制备与表征[A];第六届中国功能材料及其应用学术会议论文集(7)[C];2007年
中国重要报纸全文数据库 前2条
1 中国经济导报记者 刘宝亮;用3-5年时间打造中国电池行业的“巨无霸”[N];中国经济导报;2014年
2 邓小国 记者 傅江平;TBT评议成为应对壁垒有效手段[N];中国质量报;2010年
中国博士学位论文全文数据库 前10条
1 孟祥伟;中温固体氧化物燃料电池阴极和电解质材料的性能研究[D];吉林大学;2016年
2 刘巍;固态氧离子电解质材料的多维结构制备与性能[D];清华大学;2013年
3 田瑞芬;掺杂氧化铈基中温固体氧化物燃料电池电解质材料的制备与表征[D];中国科学技术大学;2009年
4 尹广超;磷灰石结构硅/锗酸镧电解质材料的制备与性能研究[D];吉林大学;2014年
5 李彬;氧化铈基和磷灰石型硅酸镧基电解质材料的研究[D];清华大学;2010年
6 钱婧;中低温固体氧化物燃料电池双层电解质的脉冲激光制备及电化学研究[D];中国科学技术大学;2014年
7 翟玉玲;掺杂LaGaO_3电解质的制备与性能研究[D];华中科技大学;2007年
8 徐丹;中温固体氧化物燃料电池CeO_2基复合电解质材料的制备和性能研究[D];吉林大学;2008年
9 沙雪清;双掺杂CeO_2和LaGaO_3电解质的制备及性能研究[D];哈尔滨工业大学;2007年
10 柳勇;中温固体氧化物燃料电池电解质及相关材料和性能的研究[D];天津大学;2012年
中国硕士学位论文全文数据库 前10条
1 范悦;(SDC/YSZ)_N超晶格电解质的制备及性能[D];内蒙古大学;2015年
2 李罗丹;质子型BaCe_(0.8)Sm_xY_(0.2-x)O_(3-δ)基电解质材料的制备及其性能研究[D];南京理工大学;2015年
3 时哲;含磺酸锂聚酰胺电解质的制备及性能研究[D];哈尔滨工业大学;2015年
4 田越;新型中温固体氧化物燃料电池电解质材料的制备与性能研究[D];大连海事大学;2016年
5 刘丽伟;Bi_2O_3/YSZ和Bi_2O_3/YbSZ电解质的合成制备和表征[D];浙江大学;2016年
6 吴国春;低温固体氧化物燃料电池复合电解质性能优化[D];太原理工大学;2016年
7 曹敏;中温固体氧化物燃料电池电解质材料的研究[D];南京航空航天大学;2006年
8 张哲;固体氧化物燃料电池电解质材料的制备与性能研究[D];中南大学;2011年
9 姜晓丽;铈钪共掺杂锆基电解质材料的制备[D];内蒙古科技大学;2011年
10 李晶晶;钆掺杂氧化铈电解质材料的制备及电化学性能研究[D];哈尔滨工业大学;2014年
,本文编号:2233248
本文链接:https://www.wllwen.com/kejilunwen/huaxuehuagong/2233248.html