不同形貌铌酸钾功能组装体的制备及其性能研究
[Abstract]:The conversion of solar energy to clean and renewable hydrogen energy by photocatalytic reduction of water to hydrogen has become a hot spot in the field of photocatalysis. Potassium niobate is a stable, cheap, adjustable and easily modified semiconductor, which has potential applications in photocatalytic reduction of water for hydrogen production and sensing. In this paper, a variety of photocatalysts were prepared by using reductive graphene instead of noble metal Pt as co-catalysts and assembled with potassium niobate with different morphologies, and their activity in photocatalytic reduction of water for hydrogen production was studied. Stability and electron transfer mechanism. Secondly, the layered and ordered potassium niobate / Ag20 composite films were assembled and their Raman response to low concentration crystal violet was studied. The main research contents are as follows: a novel RGO/ potassium niobate composite nano-axis was prepared by inserting reduced graphene oxide (RGO),) in the crimp process of potassium niobate nanoparticles. The structure, morphology and optical properties of potassium niobate / RGO composite nano-axis were characterized by XRD,TEM, solid-state UV-Vis diffuse reflectance spectroscopy. The photocatalytic reduction activity of potassium niobate / RGO nanoaxis for hydrogen production from water under UV irradiation was studied. The results show that the photocatalytic hydrogen production of potassium niobate nanoaxis can be increased by 3.1 times with a small amount of RGO (2%), and the performance is stable. Fluorescence spectra and AC impedance spectra show that the introduction of RGO can effectively improve the separation efficiency of photogenerated electrons and holes in the potassium niobate nanoaxis, which is the main reason for the high photocatalytic activity of RGO/ potassium niobate nanoaxis. A core-shell structure photocatalyst of reduced graphene / potassium niobate composite microspheres was prepared by mixing graphene oxide and potassium niobate microspheres at room temperature. The composition, morphology and electron transfer of the products were studied by means of XRD,SEM, solid-state UV-Vis diffuse reflectance spectroscopy, fluorescence spectra and AC impedance spectroscopy. Because the reduced graphene oxide acts as a co-catalyst, it can transfer photogenerated electrons in time, thus avoiding the recombination with the hole, so, The redox graphene / potassium niobate composite microspheres exhibit higher hydrogen production activity under UV irradiation than pure potassium niobate microspheres and P25 TiO2. In addition, the stability of hydrogen production by reducing water with graphene oxide and potassium niobate composite microspheres under UV irradiation was studied. The redox graphene / potassium niobate composite microspheres had almost no change in hydrogen production activity after six cycles, which indicated that the reduced graphene / potassium niobate composite microspheres were cheap, easy to obtain and high in photocatalytic hydrogen production. A stable photocatalyst. A structured and ordered potassium niobate / silver oxide composite film was prepared by layer-by-layer self-assembly technique and UV in-situ reduction method. The composition, crystallinity and morphology of the composite films were characterized by XRD,SEM,XPS. The determination of low concentration crystal violet was studied by surface-enhanced Raman scattering with potassium niobate / nano-silver oxide composite film as active substrate. The results show that the potassium niobate nanochip / nano-silver oxide composite film can be used to detect crystal violet with low concentration quickly and efficiently. The rapid electron transfer between nano-silver oxide and potassium niobate nanoparticles in the composite film is the key to the detection of low concentration crystal violet.
【学位授予单位】:上海应用技术学院
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:O643.36;TQ116.2
【相似文献】
相关期刊论文 前10条
1 王文山,邹群,耿兆华;感应加热提拉法铌酸钾晶体生长过程中赋色的研究[J];硅酸盐学报;1987年04期
2 王世平;苗鸿雁;谈国强;;铌酸钾粉体水热法制备的工艺研究[J];无机盐工业;2007年03期
3 赵德明;牟庆平;栾波;;铌酸钾的合成、表征及性能研究[J];化工技术与开发;2012年03期
4 丁盛平,黄仲臧,沈嘉祺,殷文之;铌酸钾半导瓷的烧结及其电性能[J];无机材料学报;1989年01期
5 王继扬,岳书斌,刘耀岗,李丽霞,魏景谦;钽铌酸钾晶体相结构和相变的研究[J];无机材料学报;1989年03期
6 张道范,宋有庭,季阳阳,刘宏斌,吴星,牛小娟,朱镛;铌酸钾锂单晶的生长及介电性能[J];人工晶体学报;1997年Z1期
7 程振祥,张树君,陈焕矗,张沛霖,钟维烈;掺镁铌酸钾锂晶体的生长与介电特性[J];功能材料;2001年04期
8 赵致如;张帆;;铌酸钾织构陶瓷用模板粉体的制备[J];当代化工;2011年03期
9 赵德明;牟庆平;栾波;;铌酸钾粉体的固相法制备研究[J];化学工业与工程技术;2012年05期
10 李月明;刘志;沈宗洋;王竹梅;洪燕;谢俊;;反应制度对两步熔盐法制备铌酸钾钠粉体形貌的影响[J];稀有金属材料与工程;2013年S1期
相关会议论文 前5条
1 田浩;都研;姚博;周忠祥;;钽铌酸钾钠单晶电光性能的临界特性研究[A];中国晶体学会第五届全国会员代表大会暨学术大会(晶体生长分会场)论文摘要集[C];2012年
2 曹洋;朱孔军;裘进浩;庞旭明;顾洪汇;郑红娟;;铌酸钾钠无铅压电陶瓷薄膜的制备方法研究[A];2010年海峡两岸功能性复合材料论坛论文集[C];2010年
3 褚祥诚;高仁龙;郇宇;王晓慧;李龙土;;Li、Sb、Ta共掺杂对铌酸钾钠基无铅压电陶瓷相结构和压电介电性能的影响[A];第十七届全国高技术陶瓷学术年会摘要集[C];2012年
4 刘波;毕建聪;郑威;徐玉恒;;双掺铈锰铌酸钾锂晶体的生长及光折变性能的研究[A];第五届中国功能材料及其应用学术会议论文集Ⅰ[C];2004年
5 陈俊;公衍生;王传彬;沈强;张联盟;;聚合物前驱体法制备铌酸钾锂粉体的研究[A];第六届中国功能材料及其应用学术会议论文集(2)[C];2007年
相关博士学位论文 前1条
1 李均;无铅钽铌酸钾锂晶体的介电和压电性能研究[D];哈尔滨工业大学;2013年
相关硕士学位论文 前10条
1 洪振;不同形貌铌酸钾功能组装体的制备及其性能研究[D];上海应用技术学院;2015年
2 孟祥达;正交相钽铌酸钾钠单晶的生长及压电特性研究[D];哈尔滨工业大学;2015年
3 吴忧;基于钽铌酸钾晶体的电控光束偏转特性研究[D];哈尔滨工业大学;2014年
4 李杨;钽铌酸钾锂晶体载流子迁移性能研究[D];哈尔滨工业大学;2009年
5 余遵雄;铌酸钾钠压电陶瓷的制备及其生物学性能研究[D];华南理工大学;2014年
6 张婷婷;铌酸钾微米方块光催化裂解水制氢的实验和理论研究[D];东北大学;2013年
7 王利峰;钛酸盐掺杂铌酸钾钠陶瓷的制备与电性能[D];华北电力大学;2012年
8 葛娜;Pr掺杂铌酸钾和铌酸钾钠的水热法制备及其光致发光特性研究[D];哈尔滨工业大学;2014年
9 林慧;铌酸钾钠/聚酰亚胺复合薄膜的电致发光研究[D];哈尔滨理工大学;2015年
10 刘永勤;过量钠的铌酸钾钠无铅压电陶瓷的结构和性能的研究[D];上海师范大学;2011年
,本文编号:2267697
本文链接:https://www.wllwen.com/kejilunwen/huaxuehuagong/2267697.html