氮气吸附法研究偏高岭土基地聚合物孔结构特征
[Abstract]:In order to reveal the micropore structure characteristics of metakaolin base polymers and explore the preparation of mesoporous geopolymers and the regulation of micropore structure, The adsorption / desorption isotherm curves and micropore structure (including total pore volume, specific surface area, pore shape and pore size distribution) of metakaolin base polymers were studied by nitrogen adsorption method. The effects of water glass modulus and water content on the pore structure of geopolymers were discussed. The results show that the adsorption / desorption isotherm curve of metakaolin base polymer is IV type, and the hysteresis loop is H _ 1 and H _ 3 mixed type. The specific surface area of the total pore volume is 0.141 ~ 0.313 6 cm~3/g, and the specific surface area is 28.87 ~ 53.25 mm / g, and the pore diameter is 2 ~ 92 nm,. The mesopore with a pore diameter of 2 ~ 50 nm accounts for 97.82% of the total pore volume and 98.87% of the specific surface area, respectively. The pores in the geopolymers are mainly cylindrical holes with open ends and narrow slit holes in parallel plates. At the same time there are a few closed cylindrical holes parallel plate slit holes or ink bottle holes at the same time. The pore structure of metakaolin base can be controlled by adjusting the modulus of sodium silicate and the amount of water. When the modulus of sodium silicate increased from 1. 2 to 1. 8, the total pore volume decreased from 0.225 3 cm~3/g to 0.141 8 cm~3/g,. The most suitable pore size was in the range of 13.91 nm and 19.56 nm. When the amount of water increased from 15.5 to 18.5, the total pore volume increased from 0.221 cm~3/g to 0.313 6 cm~3/g,. The pore size distribution changed from a single peak distribution to a bimodal distribution. When the amount of water increased to 18.5, the pore size distribution became wider and the most effective pore size disappeared. The water content has a stronger regulation effect on the pore structure of metakaolin base than the water glass modulus.
【作者单位】: 南京工业大学材料科学与工程学院;
【分类号】:TQ177
【相似文献】
相关期刊论文 前10条
1 王立久,李明,王宝民;偏高岭土的研究现状及展望[J];建材技术与应用;2003年01期
2 王智宇;;偏高岭土的制备及其在混凝土中的应用[J];建材技术与应用;2006年05期
3 李明玲;李宏林;高晓宝;高华敏;;土聚水泥用高活性偏高岭土的制备[J];巢湖学院学报;2009年03期
4 徐洪国;水中和;章瑞;陈伟;曾俊杰;;偏高岭土对水泥石热膨胀性能的影响[J];硅酸盐通报;2011年02期
5 杨凤玲;嵇银行;李玉寿;阎晓波;;偏高岭土对混凝土性能影响研究[J];混凝土与水泥制品;2011年05期
6 栾进华;汪洋;王伟;杨洪永;;偏高岭土活性快速测试方法研究[J];矿业工程;2011年04期
7 孙长军;马军涛;水中和;李远;;偏高岭土基改性剂在海工混凝土中的应用研究[J];混凝土与水泥制品;2013年03期
8 储诚富;李小春;邓永锋;唐俊玮;;偏高岭土对水泥改性海相软土力学性能的影响[J];岩土工程学报;2013年S1期
9 赵山泉;微波处理对偏高岭土的作用[J];国外建材科技;1996年01期
10 孙彤;;高活性偏高岭土制备最佳工艺参数的研究[J];中国水泥;2013年12期
相关会议论文 前1条
1 杜小满;刘钦甫;邢楠;;朔州煤系高岭岩制备偏高岭土用于混凝土掺合料研究[A];中国矿物岩石地球化学学会第13届学术年会论文集[C];2011年
相关硕士学位论文 前8条
1 杨大伟;偏高岭土在自密实混凝土中的应用研究[D];广州大学;2016年
2 罗新春;矿渣/偏高岭土基地聚合物材料的制备及其性能研究[D];景德镇陶瓷大学;2016年
3 邢楠;偏高岭土对水泥及混凝土性能的影响[D];北京建筑工程学院;2012年
4 喻巍;偏高岭土对水泥石的水化产物影响机理研究[D];武汉理工大学;2013年
5 许博超;偏高岭土对水泥水化过程影响的机理研究[D];北京建筑大学;2015年
6 付志恒;偏高岭土对混凝土体积稳定性及显微结构的影响[D];武汉理工大学;2011年
7 周吉;偏高岭土基土聚水泥的制备及早期强度研究[D];武汉理工大学;2012年
8 巩思宇;养护温度和时间对碱激发偏高岭土基地质聚合物反应过程及性能的影响[D];广西大学;2012年
,本文编号:2317487
本文链接:https://www.wllwen.com/kejilunwen/huaxuehuagong/2317487.html