搪瓷生产线在线统计图像识别算法研究与软件开发
[Abstract]:Image recognition technology is one of the key technologies to realize intelligent manufacturing in the future. In this paper, an online statistical system of enamel production line is used as the research object, and the image preprocessing, feature detection, image recognition and other techniques involved in the system are studied. A simple prototype system of product online statistics is implemented by using Matlab's GUI toolkit. The main work of this paper is as follows: first, the image preprocessing algorithm is studied, through histogram equalization, mean filter, piecewise linear transformation, The processing effect of image enhancement algorithm such as Gamma transform is compared and analyzed. The piecewise linear transform is used to preprocess the image collected under the condition of single product production. The methods of color extraction based on RGB color space and HSV color space were studied for the classification and counting of products under the condition of mixed product production, and the results of the two methods were compared. The color extraction method based on HSV color space is selected to extract the target region from the mixed product image. Secondly, the feature detection method of enamel products is studied. A fast ellipse detection method is proposed for the images collected in the production of individual products, which realizes the rapid recognition of product features. Aiming at the problems of image recognition under the condition of mixing production, this paper studies the methods of location and size detection of target area, segmentation of connected area in image, perspective transformation and so on, and realizes image recognition and product classification statistics under the condition of mixing production. Finally, the software and hardware system is designed, and the prototype system of online statistical image recognition based on Matlab is developed, which can accurately and quickly finish the statistics of enamel products on the production line.
【学位授予单位】:郑州大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TP391.41;TQ173.6
【参考文献】
相关期刊论文 前10条
1 周观春;史阔;郝福洋;;电气自动化中智能化技术的运用[J];电子技术与软件工程;2016年12期
2 张晓娟;高瑾;;计算机图像识别技术的应用及细节问题阐述与分析[J];电子技术与软件工程;2016年06期
3 何遥;;人工智能在安防领域的发展[J];中国公共安全;2015年20期
4 周济;;智能制造——“中国制造2025”的主攻方向[J];中国机械工程;2015年17期
5 杨向东;芮晓飞;谢颖;;基于高效Hough变换的圆柱特征检测方法[J];清华大学学报(自然科学版);2015年08期
6 贺正楚;潘红玉;;德国“工业4.0”与“中国制造2025”[J];长沙理工大学学报(社会科学版);2015年03期
7 张曙;;工业4.0和智能制造[J];机械设计与制造工程;2014年08期
8 李淼;杨恢先;张建波;周彤彤;谭正华;;改进二维直方图区域划分的阈值分割方法研究[J];光电子.激光;2013年07期
9 李兴国;高炜;;基于滴水算法的验证码中粘连字符分割方法[J];计算机工程与应用;2014年01期
10 吴一全;张晓杰;吴诗Zs;张国华;张生伟;于素芬;;二维直方图θ-划分最小误差图像阈值分割[J];上海交通大学学报;2012年06期
相关硕士学位论文 前8条
1 刘雪鸥;医学图像模式识别技术的研究及应用[D];太原理工大学;2016年
2 康健新;基于图像的车牌识别系统的设计和实现[D];吉林大学;2014年
3 葛恒赫;基于机器视觉的外螺纹表面缺陷检测技术研究[D];重庆大学;2014年
4 陈冬萍;基于光电传感器测距的智能软包计数系统[D];杭州电子科技大学;2014年
5 俞U喛,
本文编号:2415872
本文链接:https://www.wllwen.com/kejilunwen/huaxuehuagong/2415872.html