废旧磷酸铁锂电池中Li和FePO 4 的选择性回收
发布时间:2022-07-11 17:53
锂离子电池(LIBs)因其高工作电压和高能量密度而被公认为是电动汽车(EV)、便携式电子设备和混合电动汽车(HEV)的理想供电来源。其中,以LiFePO4(LFP)为正极的动力电池体系由于寿命长、成本低廉和无毒害的特点,在电动汽车所用电池中占有很大的市场份额。随着电动汽车行业的迅速发展,越来越多的废旧锂离子电池随之产生,这不仅会导致严重的环境问题,还在一定程度上引起人们对固有资源短缺问题的更多担忧。众所周知,锂是重要的战略元素,但其储量不丰、分布不均。在过去的几十年中,日益增长的和极其有限的供应使得锂化合物的成本不断攀升,回收电池行业大量淘汰的废旧锂离子电池对于缓解锂资源短缺和拓展锂资源来源都具有十分重要的意义。本文基于回收废弃锂电池的技术现状,提出了一种在室温下采用天然有机酸的浸出方法,从废弃LiFePO4阴极粉末中回收Li和FePO4。富含柠檬酸和苹果酸等有机酸的柑橘类果汁(CFJs)由于其操作简单、效率较高而被用作浸出剂,主要负责金属离子的浸出。在这项工作中,我们研究了以CFJs为浸出剂从废LiFePO4阴极中选择性回收Li和FePO4的方法。并考察了不同类型柑橘类果汁的浸出影响...
【文章页数】:91 页
【学位级别】:硕士
【文章目录】:
摘要
Abstract
Acronyms
1 Introduction
1.1 Review of Lithium-ion batteries
1.1.1 Battery
1.1.2 Lithium-ion battery
1.1.3 Advantages to Li-ion batteries
1.1.4 The compositional structure of LIBs
1.2 Lithium-ion batteries global market outlook
1.3 Application of LIBs
1.4 Classification of LIBs cathode
1.4.1 Layered compounds
1.4.2 Spinel compounds
1.4.3 Polyanion compounds
1.5 Spent lithium-ion batteries
2 State-of-the-Art Recycling Strategies
2.1 General treatment for LIBs
2.1.1 Deactivation
2.1.2 Mechanical separation
2.1.3 Problems with deactivation and mechanical separation of LIBs
2.2 The current recycling strategies for spent LIBs
2.2.1 Pyrometallurgy process
2.2.2 Hydrometallurgy processes
2.3 The current recycling strategies for cathode materials of ternary-LIBs
2.3.1 Pyrometallurgy
2.3.2 Hydrometallurgy
2.3.3 Comparison between pyrometallurgy and hydrometallurgy process
2.4 The current recycling strategies for cathode materials of LFP-LIBs
2.4.1 Direct regeneration
2.4.2 Hydrometallurgical routes
2.4.3 Problems and challenges for recycling spent LFP-cathodes
2.5 Thesis motivation
3 Experimental Setup
3.1 Materials
3.2 Methodology
3.2.1 Selective recovery of Li and FePO_4 from spent LFP cathode material
3.2.2 Re-synthesis of LiFePO_4 cathode material
3.3 Characterization
3.3.1 Compositional and structural characterization
3.3.2 Electrochemical measurements
4 Selective recovery of Li and FePO_4 from spent LiFePO_4 cathode materialby Organic Acids
4.1 Results and discussion
4.1.1 Comparison of the different type of CFJs
4.1.2 Optimization of leaching conditions by lemon juice
4.1.3 Leaching mechanism
4.1.4 Recovery of Li and Fe/P in big batch
5 Re-Synthesis of LFP/C Cathode Material by Recovered Raw Material
5.1 Result and discussion
5.1.1 Regeneration of FePO_4 powder from the recovered leaching residue
5.1.2 Regeneration of LiFePO_4 cathode by the recovered FePO_4
6 Conclusion and Future work
6.1 Conclusion
6.2 Future work recommendation
References
Appendix
Acknowledgement
Author Resume
【参考文献】:
期刊论文
[1]Gas-based reduction of vanadium titano-magnetite concentrate: behavior and mechanisms[J]. Yu-lei Sui,Yu-feng Guo,Tao Jiang,Xiao-lin Xie,Shuai Wang,Fu-qiang Zheng. International Journal of Minerals Metallurgy and Materials. 2017(01)
[2]从废旧磷酸铁锂电池中回收铝、铁和锂[J]. 吴越,裴锋,贾蕗路,田旭. 电源技术. 2014(04)
[3]废旧锂离子电池正极材料LiFePO4/C的电化学修复再生[J]. 杨则恒,张俊,吴情,支莉华,张卫新. 硅酸盐学报. 2013(08)
[4]动力锂离子电池隔膜的研究进展[J]. 孙美玲,唐浩林,潘牧. 材料导报. 2011(09)
本文编号:3658614
【文章页数】:91 页
【学位级别】:硕士
【文章目录】:
摘要
Abstract
Acronyms
1 Introduction
1.1 Review of Lithium-ion batteries
1.1.1 Battery
1.1.2 Lithium-ion battery
1.1.3 Advantages to Li-ion batteries
1.1.4 The compositional structure of LIBs
1.2 Lithium-ion batteries global market outlook
1.3 Application of LIBs
1.4 Classification of LIBs cathode
1.4.1 Layered compounds
1.4.2 Spinel compounds
1.4.3 Polyanion compounds
1.5 Spent lithium-ion batteries
2 State-of-the-Art Recycling Strategies
2.1 General treatment for LIBs
2.1.1 Deactivation
2.1.2 Mechanical separation
2.1.3 Problems with deactivation and mechanical separation of LIBs
2.2 The current recycling strategies for spent LIBs
2.2.1 Pyrometallurgy process
2.2.2 Hydrometallurgy processes
2.3 The current recycling strategies for cathode materials of ternary-LIBs
2.3.1 Pyrometallurgy
2.3.2 Hydrometallurgy
2.3.3 Comparison between pyrometallurgy and hydrometallurgy process
2.4 The current recycling strategies for cathode materials of LFP-LIBs
2.4.1 Direct regeneration
2.4.2 Hydrometallurgical routes
2.4.3 Problems and challenges for recycling spent LFP-cathodes
2.5 Thesis motivation
3 Experimental Setup
3.1 Materials
3.2 Methodology
3.2.1 Selective recovery of Li and FePO_4 from spent LFP cathode material
3.2.2 Re-synthesis of LiFePO_4 cathode material
3.3 Characterization
3.3.1 Compositional and structural characterization
3.3.2 Electrochemical measurements
4 Selective recovery of Li and FePO_4 from spent LiFePO_4 cathode materialby Organic Acids
4.1 Results and discussion
4.1.1 Comparison of the different type of CFJs
4.1.2 Optimization of leaching conditions by lemon juice
4.1.3 Leaching mechanism
4.1.4 Recovery of Li and Fe/P in big batch
5 Re-Synthesis of LFP/C Cathode Material by Recovered Raw Material
5.1 Result and discussion
5.1.1 Regeneration of FePO_4 powder from the recovered leaching residue
5.1.2 Regeneration of LiFePO_4 cathode by the recovered FePO_4
6 Conclusion and Future work
6.1 Conclusion
6.2 Future work recommendation
References
Appendix
Acknowledgement
Author Resume
【参考文献】:
期刊论文
[1]Gas-based reduction of vanadium titano-magnetite concentrate: behavior and mechanisms[J]. Yu-lei Sui,Yu-feng Guo,Tao Jiang,Xiao-lin Xie,Shuai Wang,Fu-qiang Zheng. International Journal of Minerals Metallurgy and Materials. 2017(01)
[2]从废旧磷酸铁锂电池中回收铝、铁和锂[J]. 吴越,裴锋,贾蕗路,田旭. 电源技术. 2014(04)
[3]废旧锂离子电池正极材料LiFePO4/C的电化学修复再生[J]. 杨则恒,张俊,吴情,支莉华,张卫新. 硅酸盐学报. 2013(08)
[4]动力锂离子电池隔膜的研究进展[J]. 孙美玲,唐浩林,潘牧. 材料导报. 2011(09)
本文编号:3658614
本文链接:https://www.wllwen.com/kejilunwen/huaxuehuagong/3658614.html
教材专著