当前位置:主页 > 科技论文 > 化学工程论文 >

金属有机框架衍生多功能电催化材料的设计及性能研究

发布时间:2022-09-30 22:03
  大规模储能技术需要多功能的能量转换与存储系统,包括金属-空气电池、金属-二氧化碳电池以及电解水系统。为了应对当前世界面临的能源危机,我们迫切需要开发多功能电催化剂。近年来,人们致力于为二氧化碳还原反应(CO2RR)、氧还原反应(ORR)、析氧反应(OER)和析氢反应(HER)设计高效且经济的电催化剂。但是,开发一种能够同时高效催化上述所有过程的单一催化剂仍然是一个巨大的挑战。本论文针地这一问题,开展了系统研究,以获得高催化活性的多功能电催化材料,具体研究成果如下:(1)通过在惰性条件下热解经双氰胺改性的ZIF-67,设计合成了一种高效的兼具ORR和OER双功能活性的电催化剂。热解后,Co单原子均匀地分散在具有清晰形态、高孔隙率和独特结构的碳纳米管表面上。所得电催化剂对ORR和OER均表现出显著的催化性能,在碱性介质条件下的ORR过程中,催化剂的起始电位为0.99 V(相对于可逆氢电极RHE),比Pt/C的起始电位高。而且其半波电位为0.86V(相对于RHE),呈现出较高的四电子还原选择性。此外,催化剂在OER过程中,当起始电位为1.53 V(相对于RHE)时,达到10mA/cm2时过电... 

【文章页数】:189 页

【学位级别】:博士

【文章目录】:
摘要
Abstract
Annotations of Symbols
1 Introduction
    1.1 Background
    1.2 The Oxygen Reduction Reaction (ORR)
        1.2.1 Mechanism of ORR
        1.2.2 ORR in Different Media
        1.2.3 Kinetics of ORR
        1.2.4 The Tafel Plot
        1.2.5 The Exchange Current Density
        1.2.6 Techniques Used in Electrocatalytic Oxygen Reduction Reactions
    1.3 The Oxygen Evolution Reaction (OER)
        1.3.1 Mechanism of OER
        1.3.2 Energetics of OER
    1.4 The Hydrogen Evolution Reaction (HER)
        1.4.1 Mechanism of HER
    1.5 Electrochemical Water Splitting (EWS)
        1.5.1 Mechanism of EWS
        1.5.2 Set Up for EWS
        1.5.3 Challenges Associated with Water Splitting
    1.6 Electrochemical CO_2 Reduction (CO_2RR)
        1.6.1 Main Descriptors for CO2RR
    1.7 Zinc Air Batteries (ZABs)
        1.7.1 Working Principle of ZABs
    1.8 Challenges in Electrochemical Conversions
    1.9 Electrocatalysts for Energy Conversion and Storage
        1.9.1 Metal-Organic Frameworks toward Electrocatalytic Applications
        1.9.2 Single-Metals Based Catalysts
        1.9.3 Heteroatom Doped Electrocatalysts
    1.10 Motivation
    1.11 Outlines of Thesis
2 Experimental Techniques
    2.1 Synthesis
        2.1.1 Synthesis of ZIF-67
        2.1.2 Synthesis of Co@NC
        2.1.3 Synthesis of ZIF-67@DCD
        2.1.4 Synthesis of CoSAs@CNT Nanotubes
        2.1.5 Synthesis of Ni/DCD@ZIF-67
        2.1.6 Synthesis of CoNi Alloyed Carbon Nanotubes
        2.1.7 Synthesis of Surfactant Modified ZIF-67
        2.1.8 Synthesis of BrRT@CoNC
        2.1.9 Synthesis of DODAB Modified ZIF-67
        2.1.10 Solvo- thermal Synthesis BrHT@CoNC
    2.2 Electrochemical Studies
        2.2.1 Casting of Electrode for ORR
        2.2.2 Casting of Electrode for OER and HER
        2.2.3 Casting of Electrode for CO2RR
    2.3 Basic Set up for Electrochemical Studies
        2.3.1 ORR
        2.3.2 OER and HER
        2.3.3 Water Splitting
        2.3.4 CO2RR
        2.3.5 Fabrication of Zinc Air Battery
3 Cobalt Single Atoms Immobilized N-doped Carbon Nanotubes forEnhanced Bifunctional Catalysis towards Oxygen Reduction and OxygenEvolution Reactions
    3.1 Introduction
    3.2 Experimental
        3.2.1 Synthesis of ZIF-67
        3.2.2 Synthesis of Co@NC
        3.2.3 Synthesis of ZIF-67 @DCD
        3.2.4 Synthesis of CoSAs@CNTs nanotubes
    3.3 Result and Discussion
        3.3.1 Structural Characterization
        3.3.2 The growth mechanism of single Co atoms immobilized N-doped carbonnanotubes
        3.3.3 Electrochemical Performance Evaluation
    3.4 Discussions
    3.5 Conclusions
4 Efficient Tetra-Functional Electrocatalyst with Synergetic Effect ofDifferent Active Sites for Multi-Model Energy Conversion and Storage
    4.1 Introduction
    4.2 Experimental
        4.2.1 Synthesis of ZIF-67
        4.2.2 Synthesis of Co@NC
        4.2.3 Synthesis of Ni/DCD@ZIF-67
        4.2.4 Synthesis of NiSAs@ACNTFs
        4.2.5 Evaluation of Electrocatalytic Performance
    4.3 Results and Discussion
        4.3.1 Structure and Morphology
        4.3.2 Electrochemical Performance Evaluation
        4.3.3 CO_2 reduction
    4.4 Discussions
    4.5 Conclusions
5 Defect-Enriched Porous Carbon Frameworks for High-PerformanceElectrocatalysis
    5.1 Introduction
    5.2 Experimental
        5.2.1 Synthesis of ZIF-67
        5.2.2 Synthesis of Co@NC
        5.2.3 Room Temperature Synthesis of DODAB Modified ZIF-67
        5.2.4 Synthesis of BrRT@CoNC
        5.2.5 Solvothermal Synthesis of DODAB Modified ZIF-67
        5.2.6 Synthesis of BrHT@CoNC
        5.2.7 Evaluation of Electrocatalytic Performance
        5.2.8 Fabrication of Zinc Air Battery
    5.3 Results and Discussion
        5.3.1 Structure and Morphology
        5.3.2 Electrochemical Performance Evaluation
    5.4 Discussion
    5.5 Conclusions
6 Conclusions and Perspectives
    Future Perspectives
References
Acknowledgments
Resume of Author


【参考文献】:
期刊论文
[1]Bifunctional Oxygen Electrocatalyst of Mesoporous Ni/NiO Nanosheets for Flexible Rechargeable Zn–Air Batteries[J]. Peitao Liu,Jiaqi Ran,Baorui Xia,Shibo Xi,Daqiang Gao,John Wang.  Nano-Micro Letters. 2020(05)
[2]掺杂碳封装的Fe/Co基纳米颗粒氧还原催化剂(英文)[J]. 倪保霞,武鲁明,陈睿,史成香,陈铁红.  Science China Materials. 2019(11)
[3]Rational design of carbon-based metal-free catalysts for electrochemical carbon dioxide reduction: A review[J]. Song Liu,Hongbin Yang,Xiong Su,Jie Ding,Qing Mao,Yanqiang Huang,Tao Zhang,Bin Liu.  Journal of Energy Chemistry. 2019(09)
[4]Recent progress on earth abundant electrocatalysts for hydrogen evolution reaction(HER) in alkaline medium to achieve efficient water splitting–A review[J]. Jamesh Mohammed-Ibrahim,Xiaoming Sun.  Journal of Energy Chemistry. 2019(07)
[5]Single-crystalline layered double hydroxides with rich defects and hierarchical structure by mild reduction for enhancing the oxygen evolution reaction[J]. Peng Zhou,Junying He,Yuqin Zou,Yanyong Wang,Chao Xie,Ru Chen,Shuangquan Zang,Shuangyin Wang.  Science China(Chemistry). 2019(10)
[6]Flexible, Porous, and Metal–Heteroatom?Doped Carbon Nanofibers as Efficient ORR Electrocatalysts for Zn–Air Battery[J]. Qijian Niu,Binling Chen,Junxia Guo,Jun Nie,Xindong Guo,Guiping Ma.  Nano-Micro Letters. 2019(01)
[7]过渡金属(Mo,Fe,Co和Ni)基催化剂在电催化还原二氧化碳还原中应用(英文)[J]. 郝金辉,施伟东.  催化学报. 2018(07)



本文编号:3684356

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/huaxuehuagong/3684356.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户19cd8***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com