Capture of CO 2 by Switchable Solvents to Produce Valuable M
发布时间:2023-10-26 19:05
基于二氧化碳捕集与封存(CCS)、二氧化碳捕集与利用(CCU)的二氧化碳减排战略—直是非常有前景的减少温室气体排放的技术。矿物碳酸化是永久储存二氧化碳的技术之—同时该技术也可以生产很多增值材料,如已被证明具有工业价值的、可用于改进现有材料和先进材料设计的产品CaCO3。在控制多晶型物的研究方面,CaCO3颗粒的形态和尺寸—直是非常火热的研究课题,但CaCO3颗粒的结晶过程却是不容易攻克的难关。在本工作中,我们发现了—种新的循环合成方法,通过使用CO2响应的可切换的绿色溶剂来控制CaCO3的晶型,该溶剂既是作为碳源的C02的捕获剂也是CaCO3晶型引导剂。实验使用了两种典型的CO2响应可转换溶剂,1,8-二氮杂双环(5.4.0)十—碳-7-烯(DBU)和N-丁基二甲基胺(BDA),同时实验也研究了温度、钙浓度、CO2压力和反应时间的影响。结果表明,该实验流程可以通过选择合适的溶剂和调节反应条件来生产任何晶型的CaC03包括纯的亚稳球霰石和文石。更进—步地,通过机理研究表明,附着在纳米颗粒表面上的各种溶剂可以选择性地控制和引导任何特定多晶型物相的生长。对于DBU体系,该研究能够在C02鼓泡...
【文章页数】:77 页
【学位级别】:硕士
【文章目录】:
ACKNOWLEGDEMENT
ABSTRACT
摘要
ABBREVIATIONS AND SYMBOLS
Chapter 1 Introduction
1.1. General background
1.2. Literature review
1.2.1. Carbon capture and storage
1.2.2. CO2 sequestration by mineral carbonation
1.2.3. Mineral carbonation process routes
1.2.3.1. In-situ MCT
1.2.3.2. Ex-situ MCT
1.2.4. Calcium carbonate
1.2.5. Forms of calcium carbonate
1.2.5.1. Calcite
1.2.5.2. Vaterite
1.2.5.3. Aragonite
1.2.6. Limitations of the synthesis methods of CaCO3 polymorphs
1.2.6.1. Limitations of synthesis methods of calcite
1.2.6.2. Limitations of synthesis methods of vaterite
1.2.6.3. Limitations of synthesis methods of aragonite
1.2.7. Factors influencing the synthesis of CaCO3 polymorphs
1.2.7.1. Influence of temperature
1.2.7.2. Influence of pH
1.2.7.3. Influence of CO2 flow rate
1.2.7.4. Influence of additives
1.2.7.5. Influence of reactants concentration
1.2.8. Applications of CaCO3 polymorphs
1.2.8.1. Calcite applications
1.2.8.2. Vaterite applications
1.2.8.3. Aragonite applications
1.3. Switchable Hydrophilicity solvents
1.4. Problem statements and motivations
1.4.1. Problem statement
1.4.2. Motivations
Chapter 2 Experimental work and characterization methods
2.1. Chemicals
2.2. General procedure
2.2.1. Experimental procedure for vaterite synthesis using DBU at low pressure
2.2.2. Experimental procedure for Aragonite synthesis using DBU at low pressure
2.2.3. Experimental procedure for vaterite synthesis using DBU under supercritical CO2conditions
2.2.4. Experimental procedure for aragonite synthesis using DBU under supercritical CO2conditions
2.3. Morphological and structural characterization
2.3.1. X-ray diffraction
2.3.2. Functional group analysis
2.3.3. Scanning Electron Microscope (SEM)
2.3.4. Thermal stability analysis
2.3.5. Surface characterization
2.4. Sample analysis and data collection
2.4.1. X-ray diffraction, data collection and phase analysis
2.4.2. FT-IR spectroscopic analysis
2.4.3. TGA analysis data collection
Chapter 3 Results and discussions on synthesis of CaCO3 polymorphs using DBU
3.1. Abstract
3.2. Effect of temperature
3.3. Effect of calcium concentration
3.4. Effect of pressure
3.5. Effect of reaction time
3.6. Effect of DBU/water volume ratio
3.7. Optimum reaction conditions
3.8. Morphology analysis
3.9. Functional groups analysis
3.10. Thermal analysis
3.11. Surface characterization
3.12. Mechanism study
3.13. DBU recycling
Chapter 4 Results and discussions on synthesis of CaCO3 polymorphs using BDA
4.1. Abstract
4.2. Effect of temperature
4.3. Effect of calcium concentration
4.4. Effect of pressure
4.5. Effect of reaction time
4.6. Functional groups analysis
4.7. Thermal analysis
4.8. Surface characterization
4.9. Mechanism study
4.10. Solvent recovery
Chapter 5 Conclusion and recommendations
5.1. Conclusion
5.2. Recommendations
Reference
本文编号:3856805
【文章页数】:77 页
【学位级别】:硕士
【文章目录】:
ACKNOWLEGDEMENT
ABSTRACT
摘要
ABBREVIATIONS AND SYMBOLS
Chapter 1 Introduction
1.1. General background
1.2. Literature review
1.2.1. Carbon capture and storage
1.2.2. CO2 sequestration by mineral carbonation
1.2.3. Mineral carbonation process routes
1.2.3.1. In-situ MCT
1.2.3.2. Ex-situ MCT
1.2.4. Calcium carbonate
1.2.5. Forms of calcium carbonate
1.2.5.1. Calcite
1.2.5.2. Vaterite
1.2.5.3. Aragonite
1.2.6. Limitations of the synthesis methods of CaCO3 polymorphs
1.2.6.1. Limitations of synthesis methods of calcite
1.2.6.2. Limitations of synthesis methods of vaterite
1.2.6.3. Limitations of synthesis methods of aragonite
1.2.7. Factors influencing the synthesis of CaCO3 polymorphs
1.2.7.1. Influence of temperature
1.2.7.2. Influence of pH
1.2.7.3. Influence of CO2 flow rate
1.2.7.4. Influence of additives
1.2.7.5. Influence of reactants concentration
1.2.8. Applications of CaCO3 polymorphs
1.2.8.1. Calcite applications
1.2.8.2. Vaterite applications
1.2.8.3. Aragonite applications
1.3. Switchable Hydrophilicity solvents
1.4. Problem statements and motivations
1.4.1. Problem statement
1.4.2. Motivations
Chapter 2 Experimental work and characterization methods
2.1. Chemicals
2.2. General procedure
2.2.1. Experimental procedure for vaterite synthesis using DBU at low pressure
2.2.2. Experimental procedure for Aragonite synthesis using DBU at low pressure
2.2.3. Experimental procedure for vaterite synthesis using DBU under supercritical CO2conditions
2.2.4. Experimental procedure for aragonite synthesis using DBU under supercritical CO2conditions
2.3. Morphological and structural characterization
2.3.1. X-ray diffraction
2.3.2. Functional group analysis
2.3.3. Scanning Electron Microscope (SEM)
2.3.4. Thermal stability analysis
2.3.5. Surface characterization
2.4. Sample analysis and data collection
2.4.1. X-ray diffraction, data collection and phase analysis
2.4.2. FT-IR spectroscopic analysis
2.4.3. TGA analysis data collection
Chapter 3 Results and discussions on synthesis of CaCO3 polymorphs using DBU
3.1. Abstract
3.2. Effect of temperature
3.3. Effect of calcium concentration
3.4. Effect of pressure
3.5. Effect of reaction time
3.6. Effect of DBU/water volume ratio
3.7. Optimum reaction conditions
3.8. Morphology analysis
3.9. Functional groups analysis
3.10. Thermal analysis
3.11. Surface characterization
3.12. Mechanism study
3.13. DBU recycling
Chapter 4 Results and discussions on synthesis of CaCO3 polymorphs using BDA
4.1. Abstract
4.2. Effect of temperature
4.3. Effect of calcium concentration
4.4. Effect of pressure
4.5. Effect of reaction time
4.6. Functional groups analysis
4.7. Thermal analysis
4.8. Surface characterization
4.9. Mechanism study
4.10. Solvent recovery
Chapter 5 Conclusion and recommendations
5.1. Conclusion
5.2. Recommendations
Reference
本文编号:3856805
本文链接:https://www.wllwen.com/kejilunwen/huaxuehuagong/3856805.html
教材专著