Zr基块体非晶合金疏水性表面的构造
发布时间:2018-01-22 11:26
本文关键词: Zr基块体非晶合金 疏水性 化学腐蚀 电化学腐蚀 微纳复合结构表面 出处:《烟台大学》2017年硕士论文 论文类型:学位论文
【摘要】:基于荷叶表面的自清洁效应,材料表面的疏水性能受到广泛关注,表面的超疏水性能更是受到材料、仿生、高分子等领域的青睐成为研究热点之一。对于固体材料,其表面能及表面微结构是决定表面超疏水性的最关键因素。传统金属材料由于自身晶粒尺寸及晶界效应导致难以在其表面构造理想的微纳复合结构,而其在力学性能和耐腐蚀性能等方面有局限性,导致即使在其表面构造了微纳复合结构,材料的应用范围也受到较大限制。而非晶合金的高强度、高硬度和高耐腐蚀性能等方面都具有独特的优势,具有广泛的应用前景。本论文选用玻璃形成能力大、热稳定性高的(Zr_(0.55)Cu_(0.3)Al_(0.1)Ni_(0.05))_(98)Y_2和(Zr_(0.58)Nb_(0.03)Cu_(0.16)Ni_(0.13)Al_(0.10))_(98)Lu_2块体非晶合金作为研究对象,通过化学浸泡腐蚀和电化学腐蚀的方法在其表面构造微纳复合结构,并通过低表面能的硬脂酸进行再修饰以获得疏水性的表面。化学浸泡实验表明,(Zr_(0.55)Cu_(0.3)Al_(0.1)Ni_(0.05))_(98)Y_2试样在不同比例的HF:H_2O_2:H_2O腐蚀液后表面接触角没有明显增加,表明其表面疏水性没有发生明显改善。(Zr_(0.58)Nb_(0.03)Cu_(0.16)Ni_(0.13)Al_(0.10))_(98)Lu_2试样在HF:H_2O_2:H_2O=1:1:12(单位为ml)浓度下腐蚀,每次腐蚀1min,腐蚀10次,其表面接触角由未腐蚀前的57°提高到98°,试样表面的疏水性能由腐蚀前的亲水性转变为疏水性;SEM分析表明,腐蚀后表面形成了微米孔洞,其周围存在许多微纳米级的颗粒,这些微米和纳米结构共同在试样表面构成了微纳复合结构。电化学腐蚀实验表明,(Zr_(0.55)Cu_(0.3)Al_(0.1)Ni_(0.05))_(98)Y_2试样在5vol%的盐酸溶液中,在50mA恒电流下腐蚀45min后,表面接触角能由未腐蚀前的67°提高到153°,其表面由亲水性转变为超疏水特性;SEM观察发现试样表面均匀分布着微米孔洞,孔洞壁上有微米凸起,纳米级颗粒分布在凸起上,构成了微纳复合结构。在同样腐蚀条件下,(Zr_(0.58)Nb_(0.03)Cu_(0.16)Ni_(0.13)Al_(0.10))_(98)Lu_2试样腐蚀35min后表面接触角由未腐蚀前的57°增加到148°;SEM分析可知,腐蚀后试样表面上均匀分布着微米级孔洞,孔洞周围的球状颗粒上存在更小的纳米凸起,这些微观组织相互交错共同构成了微纳复合结构。
[Abstract]:Based on the self-cleaning effect of lotus leaf surface, the hydrophobicity of the surface of the material is widely concerned, and the superhydrophobicity of the surface is also affected by the material, bionic. Polymer and other fields of interest have become one of the research hotspots. For solid materials. The surface energy and surface microstructure are the most important factors to determine the hydrophobicity of the surface. Due to the grain size and grain boundary effect of traditional metal materials, it is difficult to construct an ideal micro-nano composite structure on its surface. However, its mechanical properties and corrosion resistance are limited, which leads to the limitation of the application range of the material even if the micro-nano composite structure is constructed on the surface of the alloy, and the high strength of the amorphous alloy. High hardness and high corrosion resistance have unique advantages and have wide application prospects. In this paper, glass forming ability is large. High thermal stability: 0.55 Cutix 0.3Altig 0.1 Nippon 0.05 tippon YSP 2 and 0.58NbSch / nbsp. 0.03). Cu_(0.16)Ni_(0.13)Al_(0.10))_(98)Lu_2 bulk amorphous alloy is used as the research object. The hydrophobic surface was obtained by chemical immersion corrosion and electrochemical corrosion, and modified by low surface energy stearic acid. ZR / T 0.55 / CuP 0.3 / Altip / 0.1 Nip / / 0.05 / / /. The surface contact angle of YStu2 sample did not increase obviously after the different proportion of HF:H_2O_2:H_2O corrosion solution. It shows that there is no obvious improvement in surface hydrophobicity. The Lu_2 sample was corroded at the concentration of 1: 1: 12 (in ml). The contact angle of the sample was increased from 57 掳to 98 掳after corrosion for 10 times and the hydrophobicity of the sample changed from hydrophilicity to hydrophobicity before corrosion. SEM analysis shows that there are many micro- and nanometer-sized particles around the surface of the corroded surface. These microstructures and nanostructures are formed on the surface of the samples. The electrochemical corrosion experiments show that the microstructures and nanostructures can be formed on the surface of the samples. The sample of 0.55 / Custav / 0.3Altil / Nitig / 0. 05 / T / T / T / T / T / C / C / C / C / C / C / C / C / C / C / C / C / C / C / C / C / C in the solution of 5 vol@@. After corrosion at 50 Ma constant current for 45 min, the surface contact angle was increased from 67 掳to 153 掳before corrosion, and the hydrophilicity of the surface changed from hydrophilicity to superhydrophobicity. SEM observation showed that there were micron holes distributed uniformly on the surface of the sample, and there were micron protrusions on the wall of the holes, and nano-particles were distributed on the protrusions, which formed a micro-nano composite structure under the same corrosion conditions. ZR / P 0.58 / NbS / 0.03 / CuP 0.16 / Nip / 0.13 / Al / T / 0.10 / T / T / T. The surface contact angle of Lu_2 specimen increased from 57 掳to 148 掳after corrosion for 35 minutes. SEM analysis shows that there are micrometer pores distributed uniformly on the surface of corroded samples, and smaller nano-protrusions exist on the spherical particles around the pores. These microstructures are interlaced with each other to form micro-nano composite structures.
【学位授予单位】:烟台大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TG139.8
【参考文献】
相关期刊论文 前4条
1 杜乾程;;超疏水性铁基块体非晶合金的制备及表征[J];化学工程与装备;2014年07期
2 汪卫华;;金属玻璃研究简史[J];物理;2011年11期
3 ;Anisotropism of the Non-Smooth Surface of Butterfly Wing[J];Journal of Bionic Engineering;2009年01期
4 江雷;从自然到仿生的超疏水纳米界面材料[J];现代科学仪器;2003年03期
相关硕士学位论文 前1条
1 夏婷;非晶合金可控表面微结构的超疏水性研究[D];华中科技大学;2013年
,本文编号:1454534
本文链接:https://www.wllwen.com/kejilunwen/jiagonggongyi/1454534.html